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Higher Order Linear Time-Invariant Systems

Given matrices Pj ∈ Rn×n, 0 6 j 6 `,Cj ∈ Rp×n, 0 6 j < `,B ∈ Rn×m,D ∈ Rp×m and
an input function u : [0,∞)→ Rm, we seek the state function x : [0,∞)→ Rm and the
output function y : [0,∞)→ Rp such that

P`
d`

dt`
x(t) + P`−1

d`−1

dt`−1
x(t) + · · ·+ P1

d
dt

x(t) + P0x(t) = Bu(t)

Du(t) + C`−1
d`−1

dt`−1
x(t) + · · ·+ C1

d
dt

x(t) + C0x(t) = y(t)

with initial conditions

d j

dt j
x(t)

∣∣∣∣
t=0

= x(j)
0 , 0 6 j 6 `,

where x(j)
0 ∈ Rn, 0 6 j 6 ` are given vectors.

Transfer Function

G(s) = D +
∑`−1

j=0 Cj(P0 + sP1 + s2P2 + · · ·+ s`P`)−1B = D +
∑`−1

j=0 Cj(P(s))−1B.
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Model Order Reduction for Higher Order Linear Time-Invariant Systems

Given matrices

Pj ∈ Rn×n, 0 6 j 6 `,Cj ∈ Rp×n, 0 6 j < `,B ∈ Rn×m,D ∈ Rp×m

and an input function u : [0,∞)→ Rm, we seek reduced order matrices

P̂j ∈ Rr×r , 0 6 j 6 `, Ĉj ∈ Rp×r , 0 6 j < `, B̂ ∈ Rr×m, D̂ ∈ Rp×m

with r � n such that

P̂`
d`

dt`
x̂(t) + P̂`−1

d`−1

dt`−1
x̂(t) + · · ·+ P̂1

d
dt

x̂(t) + P̂0x̂(t) = B̂u(t)

D̂u(t) + Ĉ`−1
d`−1

dt`−1
x̂(t) + · · ·+ Ĉ1

d
dt

x̂(t) + Ĉ0x̂(t) = ŷ(t)

with suitable initial conditions yields a transfer function Ĝ(s) such that

Ĝ(s) = G(s) + O((s − s0)
r ) for some s0 ∈ C.
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Galerkin Projection of Higher Order Linear Time-Invariant Systems

Given matrices Pj ∈ Rn×n,Cj ∈ Rp×n,B ∈ Rn×m,D ∈ Rp×m, find a matrix V ∈ Rn×r

with orthonormal columns with r � n and construct

P̂j = V T PjV ∈ Rr×r , B̂ = V T B ∈ Rr×m,

Ĉj = CjV ∈ Rp×r , D̂ = D ∈ Rp×m,

such that

Ĝ(s) = G(s) + O((s − s0)
r ) for some s0 ∈ C.
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Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial P(λ) = λ`P`+ λ`−1P`−1 + · · ·+ λP1 +P0 ∈ Πn
`

and convert it into λE+A ∈ Π`n1 with the same eigenvalues.

Outline

Illustrative examples

Approach 1: MOR for higher order system by Freund (2005)

(Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))

New developments in linearization of matrix polynomials
Generalization of companion form linearization L1
Block Kronecker linearizations Gr+1

Higher order LTI systems and block Kronecker linearizations
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Illustrative examples

Gyroscopic system P(λ) ∈ Πn
2

P(λ) = λ2M + λG + K , M = MT ,G = −GT ,K = K T , M,G,K ∈ Rn×n.

Such problems arise, for example, in finite element discretization in structural analysis
and in the elastic deformation of anisotropic materials. They are used to model
vibrations of spinning structures such as the simulation of tire noise, helicopter rotor
blades, or spin-stabilized satellites with appended solar panels or antennas.

Robot P(λ) ∈ Πn
4

P(λ) = λ4P4 + λ
3P3 + λ

2P2 + λP1 + P0, Pi = (−1)iPT
i , Pi ∈ Rn×n, i = 0, . . . , 4.

Such problems arise, e.g, from the model of a robot with electric motors in the joints.

T-even matrix polynomials

For both examples: P(λ) = P(−λ)T .

H. Faßbender MOR of Higher Order Systems
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Back to Higher Order Linear Time-Invariant Systems

P`
d`

dt`
x(t) + P`−1

d`−1

dt`−1
x(t) + · · ·+ P1

d
dt

x(t) + P0x(t) = Bu(t)

Du(t) + C`−1
d`−1

dt`−1
x(t) + · · ·+ C1

d
dt

x(t) + C0x(t) = y(t)

Let

z(t) =


x(t)

d
dt x(t)
...

d`−1

dt`−1 x(t)

 , BF =


0
...
0
B

 , AF =



0 −In 0 · · · 0

0 0 −In
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 −In
P0 P1 P2 · · · P`−1

 ,

EF =

[
I(`−1)n

P`

]
, CF = [C0 C1 · · · C`−1], DF = D.
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Approach 1 [Freund 2005]

Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

EF
d
dt

z(t) +AF z(t) = BF u(t)

y(t) = DF u(t) + CF z(t)

z(0) = z0

where

z(t) =


x(t)

d
dt x(t)

...
d`−1

dt`−1 x(t)

 , z0 =


x(0)

0

x(1)
0
...

x(`−1)
0

 ,BF =


0
...
0
B

 ,AF =


0 −In 0 · · · 0

0 0 −In
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 −In

P0 P1 P2 · · · P`−1
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Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

EF
d
dt

z(t) +AF z(t) = BF u(t)

y(t) = DF u(t) + CF z(t)

z(0) = z0

Transfer function
G(s) = DF + CF (sEF +AF )

−1BF = D +
∑`−1

j=0 Cj(P(s))−1B ∈ C[s]p×m.

EF ,AF ∈ R`n×`n,BF ∈ R`n×m are large and (block-) sparse.

λEF +AF does not inherit any structure from P(λ),
that is, e.g., P(λ) = P(λ)T does not imply that (λEF +AF )

T = λEF +AF .

H. Faßbender MOR of Higher Order Systems
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Approach 1 [Freund 2005]

Rewrite G(s) = DF + CF (sEF +AF )
−1BF for s0 ∈ C such that s0EF +AF is

nonsingular as

G(s) = DF + CF (I + (s − s0)MF )
−1RF

with

MF = (s0EF +AF )
−1EF ∈ C`n×`n, RF = (s0EF +AF )

−1BF ∈ C`n×m.

Compute orthonormal basis of Ks(MF ,RF ) = span{RF ,MFRF , . . . ,M
s−1
F RF }.

Let W be the matrix representing the basis.
Generate reduced order system

Ê
d
dt

ẑ(t) + Âẑ(t) = B̂u(t)

ŷ(t) = Du(t) + Ĉẑ(t)

with Ê = WTEW, Â = WTAW ∈ Cr×r , B̂ = WTB ∈ Cr×m, Ĉ = CW ∈ Cp×r .

It seems as if no `th order ODE can be extracted.
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ŷ(t) = Du(t) + Ĉẑ(t)
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Ê
d
dt
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ŷ(t) = Du(t) + Ĉẑ(t)
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The matrices MF and RF have a particular structure

MF = (s0EF +AF )
−1EF = (c ⊗ In)

[
M(1) M(2) M(3) · · · M(`)

]
+ Σ⊗ In,

RF = (s0EF +AF )
−1BF = c ⊗ R,

where
M(i) = (P(s0))

−1
`−i∑
j=0

sj
0Pi+j ∈ Cn×n, i = 1, . . . , `

R = (P(s0))
−1B ∈ Cn×m,

c =


1
s0

s2
0
...

s`−1
0

 , Σ =



0 0 · · · · · · 0

1 0
. . .

...

s0 1 0
. . .

...
...

. . .
. . .

. . .
...

s`−2
0 · · · s0 1 0


∈ C`×`.
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Theorem (Freund 2005)

Let MF = (c ⊗ In)
[
M(1) M(2) M(3) · · · M(`)

]
+ Σ⊗ In, and RF = c ⊗ R with

c ∈ C`, cj 6= 0, j = 1, . . . , `, R ∈ Cn×m,M(i) ∈ Cn×n, i = 1, . . . , `, Σ ∈ C`×`. Let
W ∈ C`n×r be any basis of the block-Krylov subspace Ks(MF ,RF ), r 6 sm. Then W

can be represented in the form
WU(1)

WU(2)

...
WU(`)

 where W ∈ Cn×r and, for each i = 1, 2, . . . , `,
U(i) ∈ Cr×r is nonsingular and upper triangular.

Ks(MF ,RF ) ⊂ C`n consists of ` ’copies’ of the subspace Sr = span{W } ⊂ Cn.

Let V be the matrix representing an orthonormal basis of span{W }.

Choose

V = diag(V ,V , . . . ,V ) ∈ C`n×`r ,V HV = Ir .

Then Ks(MF ,RF ) ⊆ rangeV.
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Approach 1 [Freund 2005]

Project the first order system using V(
VHEFV

)
VH d

dt
z(t) +

(
VHAFV

)
VHz(t) =

(
VHBF

)
u(t)

y(t) = DF u(t) + (CFV)V
Hz(t)

with

VHBF =


0
...
0

V HB

 ,VHAFV =



0 −In 0 · · · 0

0 0 −In
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 −In

VP0V H VP1V H VP2V H · · · VP`−1V H

 ,

VHEFV =

[
I(`−1)n

V HP`V

]
, CFV = [C0V C1V · · · C`−1V ], DF = D.

An `th order reduced order system can be read off immediately.

The first moments of the reduced order system match those of the original system.
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Approach 1 and 2

Approach 1 and 2 use companion form linearization.

Approach 1 uses block-Krylov subspace Ks(MF ,RF ) with MF = (s0EF +AF )
−1EF

and RF = (s0EF +AF )
−1BF .

Approach 2 uses block-Krylov subspace Ks(MB,RB) with MB = A−1
B EB and

RB = A−1
B BB.

Neither λEF +AF nor λEB +AB is structure-preserving, e.g.,
(−λEF +AF )

T 6= λEF +AF and (−λEB +AB)
T 6= λEB +AB.

There are numerous other linearizations.
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Vector space L1(P) Vector space Gr+1

Vector space L1(P) of linearizations – Motivation

Systematic way to construct linearizations that allow for the preservation of structure
and/or are better conditioned than the companion forms.

[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]

P(λ)x =
∑̀
i=0

λiPix

=⇒ linearization of size `n × `nλ


P` 0 0 · · · 0
0 In 0 · · · 0
0 0 In · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 In

+


P`−1 P`−2 · · · P1 P0
−In 0 · · · 0 0

0 −In · · · 0 0
...

...
. . .

...
...

0 0 · · · −In 0




︸ ︷︷ ︸
L1(λ)


λ`−1x
λ`−2x

...
λx
x

 =


P(λ)x

0
...
0

 .
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Vector space L1(P) of linearizations – Motivation

Thus

L1(λ)


λ`−1x
λ`−2x

...
λx
x

 =


P(λ)x

0
...
0

 ⇐⇒ L1(λ) · (Λ` ⊗ In)x = e1 ⊗ P(λ)x

as 
λ`−1x
λ`−2x

...
λx
x

 =




λ`−1

λ`−2

...
λ

1

⊗ In

 x = (Λ`⊗In)x and


P(λ)x

0
...
0

 = e1⊗P(λ)x.
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Vector space L1(P) of linearizations

Generalize L1(λ) · (Λ` ⊗ In) = e1 ⊗ P(λ) to

L(λ) · (Λ` ⊗ In) = v ⊗ P(λ) for L(λ) = λE+A.

Definition [Ansatz space] [4M]

L1(P) = {L(λ) = λE+A | E,A ∈ R`n×`n,L(λ) · (Λ` ⊗ In) = v ⊗ P(λ)
for some ansatz vector v ∈ R`}.

Theorem [4M],[FS-1]

L1(P) is a vector space over R with dimL1(P) = `(`− 1)n2 + `.

Almost all pencils in L1(P) are strong linearizations of P(λ).

L(λ) = [v ⊗ In W ]L1(λ) for v 6= 0 and an arbitrary W ∈ R`n×(`−1)n is a strong
linearization of P(λ), if [v ⊗ In W ] is nonsingular.

Similar derivation for second companion form L2(λ) gives L2(P).

There do exist linearizations that are not in L1(P) or L2(P).
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L(λ) = [v ⊗ In W ]L1(λ) for v 6= 0 and an arbitrary W ∈ R`n×(`−1)n is a strong
linearization of P(λ), if [v ⊗ In W ] is nonsingular.

Similar derivation for second companion form L2(λ) gives L2(P).

There do exist linearizations that are not in L1(P) or L2(P).
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Matrix Polynomials – (Strong) Linearization

Definition (Linearization)

A pencil L(λ) = λE+A with E,A ∈ Rkn×kn is called a linearization of P(λ) ∈ Πn
` if

there exist unimodular matrix polynomials E(λ),F(λ) such that

E(λ)L(λ)F(λ) =

[
P(λ) 0

0 I(k−1)n

]
for some k ∈ N. A matrix polynomial E(λ) is unimodular if detE(λ) is a nonzero constant.

Theorem [Lancaster, Psarrakos Report 2005]

For regular polynomials P(λ) :

any linearization: the Jordan structure of all finite eigenvalues is preserved.

strong linearization: the Jordan structure of the eigenvalue ∞ is preserved.

Example

λP1 + P0 = λ

[
4 5
0 0

]
−

[
1 2
0 3

]
=⇒ λ1 =

1
4
, λ2 =

3
0
= ∞.
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Vector space L1(P) of linearizations and Approach 1

Freund considers

EF
d
dt

z(t) +AF z(t) = BF u(t)

y(t) = DF u(t) + CF z(t).

Interpret Freund’s approach in terms of the first companion form L1(λ) = λE1 +A1

E1
d
dt

z̃(t) +A1z̃(t) = B1u(t)

y(t) = DF u(t) + C1z̃(t).

with

z̃(t) = PT z̃(t)

B1 = PTB

C1 = CFP

as L1(λ) = λE1 +A1 = λPTEFP+ PTAFP with P =

[
In

. .
.

In

]
.
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Vector space L1(P) of linearizations and Approach 1

Approach is based on the Krylov subspace induced by M = (L1(s0))
−1E1 and

R = (L1(s0))
−1B1.

All linearizations in L1 can be written as

L(λ) = [v ⊗ In W ]L1(λ) = TL1(λ) = λTE1 + TA1

with v ∈ R`,W ∈ R`n×(`−1)n such that T = [v ⊗ In W ] is nonsingular.

As

(TE1)
d
dt

z(t) + (TA1) z(t) = (TB1) u(t)

and

(L(s0))
−1 (TE1) = (L1(s0))

−1E1 = M,

(L(s0))
−1 (TB1) = (L1(s0))

−1B1 = R,

all linearization in L1 will yield (theoretically) the same reduced order system.

A similar observation holds for Approach 2.
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Vector space L1(P) – Structured Linearizations

Gyroscopic system P(λ) = P(−λ)T ∈ Πn
2

P(λ) = λ2M + λG + K , M = MT ,G = −GT ,K = K T , M,G,K ∈ Rn×n.

Companion form in L1(P)

L1(λ) =

[
M 0
0 I

]
+

[
G K
−I 0

]
is not structure preserving as L1(λ) 6= L1(−λ)

T .

Structured linearization in L1(P)

L(λ) = λ

[
0 −M
M G

]
+

[
M 0
0 K

]
∈ L1(P)

is a structure-preserving linearization (L(λ) = L(−λ)T ).
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Vector space L1(P) – Structured Linearizations

Robot P(λ) = P(−λ)T ∈ Πn
4

P(λ) = λ4P4 + λ
3P3 + λ

2P2 + λP1 + P0, Pi = (−1)iPT
i , Pi ∈ Rn×n, i = 0, . . . , 4.

Companion form in L1(P)

L1(λ) = λ

P4 0 0 0
0 In 0 0
0 0 In 0
0 0 0 In

+

 P3 P2 P1 P0
−In 0 0 0

0 −In 0 0
0 0 −In 0



Structured linearizations in L1(P) different [4M]

L(λ) = λ

 0 −P4 0 −P4
P4 P3 P4 P3
0 −P4 P1 − P3 P0 − P2

P4 P3 P2 − P0 P1

+

P4 0 P4 0
0 P2 − P4 P1 − P3 P0

P4 P3 − P1 P2 − P0 0
0 P0 0 P0
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Vector space L1(P) – Structured Linearizations

P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/30;
P4=eye(n);
P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';

L1(λ) and L(λ) may be very
differently conditioned.

H. Faßbender MOR of Higher Order Systems



Introduction Approach 1 Linearizations Example Robot Conclusions
Vector space L1(P) Vector space Gr+1

Vector space L1(P) – Structured Linearizations

P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/30;
P4=eye(n);
P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';

L1(λ) and L(λ) may be very
differently conditioned.

H. Faßbender MOR of Higher Order Systems



Introduction Approach 1 Linearizations Example Robot Conclusions
Vector space L1(P) Vector space Gr+1

Vector space L1(P) – Structured Linearizations

P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/5;
P4=.5*gallery('poisson',10);
P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';

L1(λ) and L(λ) may be very
differently conditioned.
L(λ) is not (block) sparse,
while L1(λ) is.
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Structured Linearization not in L1(P)

Robot P(λ) = P(−λ)T ∈ Πn
4

P(λ) = λ4P4 + λ
3P3 + λ

2P2 + λP1 + P0, Pi = (−1)iPT
i , Pi ∈ Rn×n, i = 0, . . . , 4.

(Structured) Linearization not in L1(P)

L(λ) =


P4 0 0 I 0
0 −P2 − λP3 0 λI I
0 0 P0 + λP1 0 λI
I −λI 0 0 0
0 I −λI 0 0

 = λE+A Note+E,A ∈ R5n×5n!

as

V(λ)L(λ)U(λ) = diag(I4n,P(λ))

for

V(λ) =


In 0 0 −P4 −λP4

−λIn In 0 λP4 λ2P4 +λP3 + P2
0 0 0 In 0
0 0 0 0 In
λ2 In −λIn In −λ2P4 −λ3P4 −λ2P3 −λP2

 ,U(λ) =


0 0 In λIn λ2 In
0 0 0 In λIn
0 0 0 0 In
In 0 0 0 −λ2P4
0 In 0 0 λ3P4 +λ2P3 +λP2

 ,

detU(λ) = detV(λ) = 1.
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Block Kronecker Ansatz space Gr+1

Definition [Block Kronecker Ansatz space] [FS-2]

Let P(λ) ∈ Πn
` with ` = r + s + 1. The block Kronecker ansatz space Gr+1(P) is the

set of all `n × `n matrix pencils L(λ) that satisfy the block Kronecker ansatz equation

[
[ λr In · · · In ]

Is n

] L(λ)︷ ︸︸ ︷[
L11(λ) L12(λ)

L21(λ) L22(λ)

]
 λsIn

...
In


Ir n

 =

[
αP(λ) 0

0 0

]
.

Gr+1(P) is a vector space over R of dimension (`− 1)`n2 + 1. [FS-2]

Thus, L1(P) 6= Gr+1(P).

Almost all pencils in Gr+1(P) are strong linearizations of P(λ). [FS-2]
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[ λr In · · · In ]

Is n

] L(λ)︷ ︸︸ ︷[
L11(λ) L12(λ)

L21(λ) L22(λ)

]
 λsIn

...
In


Ir n

 =

[
αP(λ) 0

0 0

]
.

Gr+1(P) is a vector space over R of dimension (`− 1)`n2 + 1. [FS-2]

Thus, L1(P) 6= Gr+1(P).

Almost all pencils in Gr+1(P) are strong linearizations of P(λ). [FS-2]
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Higher order system and block Kronecker linearizations

Robot P(λ) ∈ Πn
4

P4
d4

dt4
x(t) + P3

d3

dt3
x(t) + P2

d2

dt2
x(t) + P1

d
dt

x(t) + P0x(t) = Bu(t)

Du(t) + C3
d3

dt3
x(t) + C2

d2

dt2
x(t) + C1

d
dt

x(t) + C0x(t) = y(t)

The linearization

L(λ) = λE+A =


P4 0 0 I 0
0 −P2 − λP3 0 λI I
0 0 P0 + λP1 0 λI
I −λI 0 0 0
0 I −λI 0 0


does not give an equivalent first order ODE of the form E d

dt z(t) +Az(t) = Bu(t)

as [λ2 In −λIn In 0 0]

 P4 0 0 I 0
0 −P2 −λP3 0 λI I
0 0 P0 +λP1 0 λI
I −λI 0 0 0
0 I −λI 0 0

λ2 In
λIn
In
0
0

 = P(λ).
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Block Kronecker Ansatz space Gr+1

In L1 all linearizations are based on L1(λ), the linearizations in Gr+1 are based on

LK (λ) = λEK +AK

=



λαP` + αP`−1 αP`−2 · · · αPr

αPr−1

...
αP0

−In

λIn
. . .
. . . −In

λIn
−In λIn

. . .
. . .

−In λIn

0


=

[
Σr (λ) LT

r (λ)
Ls(λ) 0

]
with ` = r + s + 1, Σr (λ) ∈ C(r+1)n×sn, and Lj(λ) ∈ Cjn×(j+1)n.
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Block Kronecker Ansatz space Gr+1

We can find BK ,CK such that

G(s) = D +

`−1∑
j=0

Cj((P(s))
−1B = DK + CK (LK (s))

−1
BK .

Introduce shift s0 ∈ C such that LK (s0) = s0EK +AK is nonsingular. Then

G(s) = DK + CK (LK (s))
−1BK = DK + CK (I + (s − s0)MK )

−1RK

with
MK = (LK (s0))

−1EK , RK = (LK (s0))
−1BK .

Compute basis of Ks(MK ,RK ). Represent the basis in block form[ W1
W2
...

W`

]
, Wj ∈ Cn×r .

Generate reduced order higher order system via projection with V , the matrix
representing an orthonormal basis of span{Wr+1}.
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Block Kronecker Ansatz space Gr+1

Any linearization in Gr+1 can be expressed as

L̃K (λ) = T1LK (λ)T2 with T1 =

[
I(r+1)n B1

0 C1

]
, T2 =

[
I(s+1)n 0

B2 C2

]
and B1 ∈ R(r+1)n×s n,B2 ∈ Rr n×(s+1)n,C1 ∈ Rsn×sn,C2 ∈ Rr n×r n.

G(s) = DK + C̃K (L̃K (s))−1B̃K with C̃K = CKT2, B̃K = T1BK .

G(s) = DK + C̃K (I + (s − s0)M̃K )
−1R̃K with

M̃K = (L̃K (s0))
−1T1EKT2, R̃K = (L̃K (s0))

−1B̃K ,

= T−1
2 MKT2, = T−1

2 RK .

Thus, K(M̃K , R̃k) = T−1
2 K(MK ,Rk).

As before: Compute basis of Ks(M̃K , R̃K ). Represent it in block form with blocks
Wj ∈ Cn×r , j = 1, . . . , `. Generate reduced order higher order system via projection
with V , the matrix representing an orthonormal basis of span{Wr+1}.
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Four different Linearizations for Robot Example

Robot P(λ) ∈ Πn
4

P4
d4

dt4
x(t) + P3

d3

dt3
x(t) + P2

d2

dt2
x(t) + P1

d
dt

x(t) + P0x(t) = Bu(t), Pi = (−1)iPT
i

Du(t) + C3
d3

dt3
x(t) + C2

d2

dt2
x(t) + C1

d
dt

x(t) + C0x(t) = y(t)

P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/5;
P4=.5*gallery('poisson',10);
P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';
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Robot P(λ) ∈ Πn
4

P4
d4

dt4
x(t) + P3

d3

dt3
x(t) + P2

d2

dt2
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d
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x(t) + P0x(t) = Bu(t), Pi = (−1)iPT
i

Du(t) + C3
d3

dt3
x(t) + C2

d2

dt2
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d
dt

x(t) + C0x(t) = y(t)

P0=1/100*gallery('poisson',10);
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P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';
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Eigenvalues of Robot Example
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Conclusions

Galerkin projection based MOR for higher order LTI systems.
Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.
Vector spaces L1(P) and Gr+1(P) allow to generate an abundance of
linearizations.
Linearizations have different condition.

It is not (yet) clear how to choose an optimally conditioned linearization.
For the structured robot example, the structured linearizations seem to be better
conditioned.

LU decomposition of linearization needs to be computed efficiently.
For block-dense linearizations, the LU decomposition can be computed in about O(`3n3)
flops.
For the structured robot example, the LU decomposition of the structured block Kronecker
linearization can be computed in just O(n3 + `2n2) flops.

Open question: What are the dominant poles of a higher order system?

Thank you for your attention!
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Vector spaces L1(P) and Gr+1(P) allow to generate an abundance of
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