

Model Order Reduction of Higher Order Systems

Joint work with Peter Benner and Philip Saltenberger
Heike Faßbender, ICERM, February 2020
Institute for Numerical Analysis, TU Braunschweig

Higher Order Linear Time-Invariant Systems

Higher Order Linear Time-Invariant Systems

Given matrices $P_{j} \in \mathbb{R}^{n \times n}, 0 \leqslant j \leqslant \ell, C_{j} \in \mathbb{R}^{p \times n}, 0 \leqslant j<\ell, B \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{p \times m}$ and an input function $u:[0, \infty) \rightarrow \mathbb{R}^{m}$, we seek the state function $x:[0, \infty) \rightarrow \mathbb{R}^{m}$ and the output function $y:[0, \infty) \rightarrow \mathbb{R}^{p}$ such that

$$
\begin{aligned}
P_{\ell} \frac{d^{\ell}}{d t^{\ell}} x(t)+P_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+P_{1} \frac{d}{d t} x(t)+P_{0} x(t) & =B u(t) \\
D u(t)+C_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+C_{1} \frac{d}{d t} x(t)+C_{0} x(t) & =y(t)
\end{aligned}
$$

with initial conditions

$$
\left.\frac{d^{j}}{d t j^{\prime}} x(t)\right|_{t=0}=x_{0}^{(j)}, \quad 0 \leqslant j \leqslant \ell
$$

where $x_{0}^{(j)} \in \mathbb{R}^{n}, 0 \leqslant j \leqslant \ell$ are given vectors.

Higher Order Linear Time-Invariant Systems

Higher Order Linear Time-Invariant Systems

Given matrices $P_{j} \in \mathbb{R}^{n \times n}, 0 \leqslant j \leqslant \ell, C_{j} \in \mathbb{R}^{p \times n}, 0 \leqslant j<\ell, B \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{p \times m}$ and an input function $u:[0, \infty) \rightarrow \mathbb{R}^{m}$, we seek the state function $x:[0, \infty) \rightarrow \mathbb{R}^{m}$ and the output function $y:[0, \infty) \rightarrow \mathbb{R}^{p}$ such that

$$
\begin{aligned}
P_{\ell} \frac{d^{\ell}}{d t^{\ell}} x(t)+P_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+P_{1} \frac{d}{d t} x(t)+P_{0} x(t) & =B u(t) \\
D u(t)+C_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+C_{1} \frac{d}{d t} x(t)+C_{0} x(t) & =y(t)
\end{aligned}
$$

with initial conditions

$$
\left.\frac{d^{j}}{d t^{j}} x(t)\right|_{t=0}=x_{0}^{(j)}, \quad 0 \leqslant j \leqslant \ell
$$

where $x_{0}^{(j)} \in \mathbb{R}^{n}, 0 \leqslant j \leqslant \ell$ are given vectors.

Transfer Function

$$
G(s)=D+\sum_{j=0}^{\ell-1} C_{j}\left(P_{0}+s P_{1}+s^{2} P_{2}+\cdots+s^{\ell} P_{\ell}\right)^{-1} B=D+\sum_{j=0}^{\ell-1} C_{j}(P(s))^{-1} B
$$

Higher Order Linear Time-Invariant Systems

Model Order Reduction for Higher Order Linear Time-Invariant Systems

Given matrices

$$
P_{j} \in \mathbb{R}^{n \times n}, 0 \leqslant j \leqslant \ell, C_{j} \in \mathbb{R}^{p \times n}, 0 \leqslant j<\ell, B \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{p \times m}
$$

and an input function $u:[0, \infty) \rightarrow \mathbb{R}^{m}$, we seek reduced order matrices

$$
\hat{P}_{j} \in \mathbb{R}^{r \times r}, 0 \leqslant j \leqslant \ell, \hat{C}_{j} \in \mathbb{R}^{p \times r}, 0 \leqslant j<\ell, \hat{B} \in \mathbb{R}^{r \times m}, \hat{D} \in \mathbb{R}^{p \times m}
$$

with $r \ll n$ such that

$$
\begin{gathered}
\hat{P}_{\ell} \frac{d^{\ell}}{d t t^{\prime}}(t)+\hat{P}_{\ell-1} \frac{d^{\ell-1}}{d t^{l-1}} \hat{x}(t)+\cdots+\hat{P}_{1} \frac{d}{d t} \hat{x}(t)+\hat{P}_{0} \hat{x}(t)=\hat{B} u(t) \\
\hat{D} u(t)+\hat{C}_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} \hat{x}(t)+\cdots+\hat{C}_{1} \frac{d}{d t} \hat{x}(t)+\hat{C}_{0} \hat{x}(t)=\hat{y}(t)
\end{gathered}
$$

with suitable initial conditions yields a transfer function $\hat{G}(s)$ such that

$$
\hat{\mathcal{G}}(s)=\mathcal{G}(s)+\mathcal{O}\left(\left(s-s_{0}\right)^{r}\right) \text { for some } s_{0} \in \mathbb{C} \text {. }
$$

Higher Order Linear Time-Invariant Systems

Galerkin Projection of Higher Order Linear Time-Invariant Systems

Given matrices $P_{j} \in \mathbb{R}^{n \times n}, C_{j} \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{p \times m}$, find a matrix $V \in \mathbb{R}^{n \times r}$ with orthonormal columns with $r \ll n$ and construct

$$
\begin{array}{ll}
\hat{P}_{j}=V^{T} P_{j} V \in \mathbb{R}^{r \times r}, & \hat{B}=V^{T} B \in \mathbb{R}^{r \times m}, \\
\hat{C}_{j}=C_{j} V \in \mathbb{R}^{p \times r}, & \hat{D}=D \in \mathbb{R}^{p \times m},
\end{array}
$$

such that

$$
\hat{G}(s)=\mathcal{G}(s)+\mathcal{O}\left(\left(s-s_{0}\right)^{r}\right) \text { for some } s_{0} \in \mathbb{C}
$$

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization
Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization
Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
> - Generalization of companion form linearization \mathbb{L}_{1}
> - Block Kronecker linearizations \mathbb{G}
> - Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Generalization of companion form linearization \mathbb{L}_{1}
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Generalization of companion form linearization \mathbb{L}_{1}
- Block Kronecker linearizations \mathbb{G}_{r+1}
- Higher order LTI systems and block Kronecker linearizations

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial $P(\lambda)=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0} \in \Pi_{\ell}^{n}$ and convert it into $\lambda \mathcal{E}+\mathcal{A} \in \Pi_{1}^{\ell n}$ with the same eigenvalues.

Outline

- Illustrative examples
- Approach 1: MOR for higher order system by Freund (2005)
- (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
- New developments in linearization of matrix polynomials
- Generalization of companion form linearization \mathbb{L}_{1}
- Block Kronecker linearizations \mathbb{G}_{r+1}
- Higher order LTI systems and block Kronecker linearizations

Illustrative examples

Gyroscopic system $P(\lambda) \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.
Such problems arise, for example, in finite element discretization in structural analysis and in the elastic deformation of anisotropic materials. They are used to model vibrations of spinning structures such as the simulation of tire noise, helicopter rotor blades, or spin-stabilized satellites with appended solar panels or antennas.

Such problems arise, e.g, from the model of a robot with electric motors in the joints.
\square
For both examples: $P(\lambda)=P(-\lambda)^{T}$

Illustrative examples

Gyroscopic system $P(\lambda) \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.
Such problems arise, for example, in finite element discretization in structural analysis and in the elastic deformation of anisotropic materials. They are used to model vibrations of spinning structures such as the simulation of tire noise, helicopter rotor blades, or spin-stabilized satellites with appended solar panels or antennas.

Such problems arise, e.g, from the model of a robot with electric motors in the joints.

Illustrative examples

Gyroscopic system $P(\lambda) \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.
Such problems arise, for example, in finite element discretization in structural analysis and in the elastic deformation of anisotropic materials. They are used to model vibrations of spinning structures such as the simulation of tire noise, helicopter rotor blades, or spin-stabilized satellites with appended solar panels or antennas.

Robot $P(\lambda) \in \Pi_{4}^{n}$

$P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4$.
Such problems arise, e.g, from the model of a robot with electric motors in the joints.

Illustrative examples

Gyroscopic system $P(\lambda) \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.
Such problems arise, for example, in finite element discretization in structural analysis and in the elastic deformation of anisotropic materials. They are used to model vibrations of spinning structures such as the simulation of tire noise, helicopter rotor blades, or spin-stabilized satellites with appended solar panels or antennas.

Robot $P(\lambda) \in \Pi_{4}^{n}$

$P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4$.
Such problems arise, e.g, from the model of a robot with electric motors in the joints.

Illustrative examples

Gyroscopic system $P(\lambda) \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.
Such problems arise, for example, in finite element discretization in structural analysis and in the elastic deformation of anisotropic materials. They are used to model vibrations of spinning structures such as the simulation of tire noise, helicopter rotor blades, or spin-stabilized satellites with appended solar panels or antennas.

Robot $P(\lambda) \in \Pi_{4}^{n}$

$$
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4 .
$$

Such problems arise, e.g, from the model of a robot with electric motors in the joints.

T-even matrix polynomials

For both examples: $P(\lambda)=P(-\lambda)^{T}$.

Higher Order Linear Time-Invariant Systems

Back to Higher Order Linear Time-Invariant Systems

$$
\begin{aligned}
P_{\ell} \frac{d^{\ell}}{d t^{\ell}} x(t)+P_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+P_{1} \frac{d}{d t} x(t)+P_{0} x(t) & =B u(t) \\
D u(t)+C_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+C_{1} \frac{d}{d t} x(t)+C_{0} x(t) & =y(t)
\end{aligned}
$$

Higher Order Linear Time-Invariant Systems

Back to Higher Order Linear Time-Invariant Systems

$$
\begin{gathered}
P_{\ell} \frac{d^{\ell}}{d t} x(t)+P_{\ell-1} \frac{d^{\ell-1}}{d t^{l-1}} x(t)+\cdots+P_{1} \frac{d}{d t} x(t)+P_{0} x(t)=B u(t) \\
D u(t)+C_{\ell-1} \frac{d^{\ell-1}}{d t^{\ell-1}} x(t)+\cdots+C_{1} \frac{d}{d t} x(t)+C_{0} x(t)=y(t)
\end{gathered}
$$

Let

$$
\begin{aligned}
& z(t)=\left[\begin{array}{c}
x(t) \\
\frac{d}{d t} x(t) \\
\vdots \\
\frac{d^{\ell-1}}{d t^{\ell-1}} x(t)
\end{array}\right], \quad \mathcal{B}_{F}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
B
\end{array}\right], \quad \mathcal{A}_{F}=\left[\begin{array}{ccccc}
0 & -I_{n} & 0 & \cdots & 0 \\
0 & 0 & -I_{n} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & -I_{n} \\
P_{0} & P_{1} & P_{2} & \cdots & P_{\ell-1}
\end{array}\right], \\
& \mathcal{E}_{F}=\left[\begin{array}{lll}
I_{(\ell-1) n} & \\
& P_{\ell}
\end{array}\right], \quad \mathcal{C}_{F}=\left[\begin{array}{llll}
C_{0} & C_{1} & \cdots & C_{\ell-1}
\end{array}\right], \quad \mathcal{D}_{F}=D .
\end{aligned}
$$

Approach 1

Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t) \\
z(0) & =z_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& z(t)=\left[\begin{array}{c}
x(t) \\
\frac{d}{d t} x(t) \\
\vdots \\
\frac{d^{\ell}-1}{d t^{\ell-1}} x(t)
\end{array}\right], z_{0}=\left[\begin{array}{c}
x_{0}^{(0)} \\
x_{0}^{(1)} \\
\vdots \\
x_{0}^{(\ell-1)}
\end{array}\right], \mathcal{B}_{F}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
B
\end{array}\right], \mathcal{A}_{F}=\left[\begin{array}{ccccc}
0 & -I_{n} & 0 & \cdots & 0 \\
0 & 0 & -I_{n} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & -I_{n} \\
P_{0} & P_{1} & P_{2} & \cdots & P_{\ell-1}
\end{array}\right], \\
& \mathcal{E}_{F}=\left[\begin{array}{ll}
I_{(\ell-1) n} & \\
& P_{\ell}
\end{array}\right], \quad \mathcal{C}_{F}=\left[\begin{array}{llll}
C_{0} & C_{1} & \cdots & C_{\ell-1}
\end{array}\right], \quad \mathcal{D}_{F}=D .
\end{aligned}
$$

Approach 1

Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t) \\
z(0) & =z_{0}
\end{aligned}
$$

- Transfer function
$G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} B_{F}=D+\sum_{h=0}^{\ell-1} C_{j}(P(s))^{-1} B \in \mathbb{C}[s]^{p \times m}$
- $\mathcal{E}_{F}, \mathcal{A}_{F} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{B}_{F} \in \mathbb{R}^{\ell n \times m}$ are large and (block-) sparse.
- $\lambda_{\varepsilon_{F}}+\mathcal{A}_{F}$ does not inherit any structure from $P(\lambda)$
that is, e.g., $P(\lambda)=P(\lambda)^{T}$ does not imply that $\left(\lambda \varepsilon_{F}+\mathcal{A}_{F}\right)^{T}=\lambda \varepsilon_{F}+\mathcal{A}_{F}$

Approach 1

Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t) \\
z(0) & =z_{0}
\end{aligned}
$$

- Transfer function
$G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}=D+\sum_{j=0}^{\ell-1} C_{j}(P(s))^{-1} B \in \mathbb{C}[s]^{p \times m}$.
- $\lambda \mathcal{E}_{F}+\mathcal{A}_{F}$ does not inherit any structure from $P(\lambda)$
that is, e.g., $P(\lambda)=P(\lambda)^{T}$ does not imply that $\left(\lambda \varepsilon_{F}+\mathcal{A}_{F}\right)^{T}=\lambda \varepsilon_{F}+\mathcal{A}_{F}$

Approach 1

Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t) \\
z(0) & =z_{0}
\end{aligned}
$$

- Transfer function
$G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}=D+\sum_{j=0}^{\ell-1} C_{j}(P(s))^{-1} B \in \mathbb{C}[s]^{p \times m}$.
- $\mathcal{E}_{F}, \mathcal{A}_{F} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{B}_{F} \in \mathbb{R}^{\ell n \times m}$ are large and (block-) sparse.
- $\lambda \mathcal{E}_{F}+\mathcal{A}_{F}$ does not inherit any structure from $P(\lambda)$
that is, e.g., $P(\lambda)=P(\lambda)^{T}$ does not imply that $\left(\lambda \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{T}=\lambda \mathcal{E}_{F}+\mathcal{A}_{F}$

Approach 1

Approach 1: Linearization via the first companion form

The higher order system is equivalent to the first order system

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t) \\
z(0) & =z_{0}
\end{aligned}
$$

- Transfer function
$G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}=D+\sum_{j=0}^{\ell-1} C_{j}(P(s))^{-1} B \in \mathbb{C}[s]^{p \times m}$.
- $\mathcal{E}_{F}, \mathcal{A}_{F} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{B}_{F} \in \mathbb{R}^{\ell n \times m}$ are large and (block-) sparse.
- $\lambda \varepsilon_{F}+\mathcal{A}_{F}$ does not inherit any structure from $P(\lambda)$, that is, e.g., $P(\lambda)=P(\lambda)^{T}$ does not imply that $\left(\lambda \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{T}=\lambda \varepsilon_{F}+\mathcal{A}_{F}$.

Approach 1

[Freund 2005]

- Rewrite $G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$ for $s_{0} \in \mathbb{C}$ such that $s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}$ is nonsingular as

$$
G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(I+\left(s-s_{0}\right) \mathcal{M}_{F}\right)^{-1} \mathcal{R}_{F}
$$

with

$$
\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F} \in \mathbb{C}^{\ell n \times \ell n}, \quad \mathcal{R}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F} \in \mathbb{C}^{\ell n \times m}
$$

- Compute orthonormal basis of $\mathcal{K}_{S}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)=\operatorname{span}\left\{\mathcal{R}_{F}, \mathcal{M}_{F} \mathcal{R}_{F}, \ldots, \mathcal{M}_{F}^{s-1} \mathcal{R}_{F}\right\}$.
- Let \mathcal{W} be the matrix representing the basis.
- Generate reduced order system

$$
\hat{y}(t)=\mathcal{D} u(t)+\hat{C} \hat{z}(t)
$$

- It seems as if no lth order ODE can be extracted.

Approach 1

[Freund 2005]

- Rewrite $G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$ for $s_{0} \in \mathbb{C}$ such that $s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}$ is nonsingular as

$$
G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(I+\left(s-s_{0}\right) \mathcal{M}_{F}\right)^{-1} \mathcal{R}_{F}
$$

with

$$
\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F} \in \mathbb{C}^{\ell n \times \ell n}, \quad \mathcal{R}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F} \in \mathbb{C}^{\ell n \times m}
$$

- Compute orthonormal basis of $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)=\operatorname{span}\left\{\mathcal{R}_{F}, \mathcal{M}_{F} \mathcal{R}_{F}, \ldots, \mathcal{M}_{F}^{s-1} \mathcal{R}_{F}\right\}$.
- Let \mathcal{W} be the matrix representing the basis.
- Generate reduced order system

\square
- It seems as if no lth order ODE can be extracted.

Approach 1

[Freund 2005]

- Rewrite $G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$ for $s_{0} \in \mathbb{C}$ such that $s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}$ is nonsingular as

$$
G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(I+\left(s-s_{0}\right) \mathcal{M}_{F}\right)^{-1} \mathcal{R}_{F}
$$

with

$$
\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F} \in \mathbb{C}^{\ell n \times \ell n}, \quad \mathcal{R}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F} \in \mathbb{C}^{\ell n \times m}
$$

- Compute orthonormal basis of $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)=\operatorname{span}\left\{\mathcal{R}_{F}, \mathcal{M}_{F} \mathcal{R}_{F}, \ldots, \mathcal{M}_{F}^{s-1} \mathcal{R}_{F}\right\}$.
- Let \mathcal{W} be the matrix representing the basis.
- Generate reduced order system

[^0]
Approach 1

[Freund 2005]

- Rewrite $G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$ for $s_{0} \in \mathbb{C}$ such that $s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}$ is nonsingular as

$$
G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(I+\left(s-s_{0}\right) \mathcal{M}_{F}\right)^{-1} \mathcal{R}_{F}
$$

with

$$
\mathcal{M}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \varepsilon_{F} \in \mathbb{C}^{\ell n \times \ell n}, \quad \mathcal{R}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F} \in \mathbb{C}^{\ell n \times m}
$$

- Compute orthonormal basis of $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)=\operatorname{span}\left\{\mathcal{R}_{F}, \mathcal{M}_{F} \mathcal{R}_{F}, \ldots, \mathcal{M}_{F}^{s-1} \mathcal{R}_{F}\right\}$.
- Let \mathcal{W} be the matrix representing the basis.
- Generate reduced order system

$$
\begin{aligned}
\hat{\mathcal{E}} \frac{d}{d t} \hat{z}(t)+\hat{\mathcal{A}} \hat{z}(t) & =\hat{\mathcal{B}} u(t) \\
\hat{y}(t) & =\mathcal{D} u(t)+\hat{\mathcal{C}} \hat{z}(t)
\end{aligned}
$$

with $\hat{\mathcal{E}}=\mathcal{W}^{\top} \mathcal{E} \mathcal{W}, \hat{\mathcal{A}}=\mathcal{W}^{\top} \mathcal{A} \mathcal{W} \in \mathbb{C}^{r \times r}, \hat{\mathcal{B}}=\mathcal{W}^{\top} \mathcal{B} \in \mathbb{C}^{r \times m}, \hat{\mathcal{C}}=\mathcal{C} \mathcal{W} \in \mathbb{C}^{p \times r}$.

- It seems as if no lth order ODE can be extracted.

Approach 1

[Freund 2005]

- Rewrite $G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(s \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$ for $s_{0} \in \mathbb{C}$ such that $s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}$ is nonsingular as

$$
G(s)=\mathcal{D}_{F}+\mathcal{C}_{F}\left(I+\left(s-s_{0}\right) \mathcal{M}_{F}\right)^{-1} \mathcal{R}_{F}
$$

with

$$
\mathcal{M}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \varepsilon_{F} \in \mathbb{C}^{\ell n \times \ell n}, \quad \mathcal{R}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F} \in \mathbb{C}^{\ell n \times m}
$$

- Compute orthonormal basis of $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)=\operatorname{span}\left\{\mathcal{R}_{F}, \mathcal{M}_{F} \mathcal{R}_{F}, \ldots, \mathcal{M}_{F}^{s-1} \mathcal{R}_{F}\right\}$.
- Let \mathcal{W} be the matrix representing the basis.
- Generate reduced order system

$$
\begin{aligned}
\hat{\mathcal{E}} \frac{d}{d t} \hat{z}(t)+\hat{\mathcal{A}} \hat{z}(t) & =\hat{\mathcal{B}} u(t) \\
\hat{y}(t) & =\mathcal{D} u(t)+\hat{\mathcal{C}} \hat{z}(t)
\end{aligned}
$$

with $\hat{\mathcal{E}}=\mathcal{W}^{\top} \mathcal{E} \mathcal{W}, \hat{\mathcal{A}}=\mathcal{W}^{\top} \mathcal{A} \mathcal{W} \in \mathbb{C}^{r \times r}, \hat{\mathcal{B}}=\mathcal{W}^{\top} \mathcal{B} \in \mathbb{C}^{r \times m}, \hat{\mathcal{C}}=\mathcal{C} \mathcal{W} \in \mathbb{C}^{p \times r}$.

- It seems as if no lth order ODE can be extracted.

Approach 1

[Freund 2005]

The matrices \mathcal{M}_{F} and \mathcal{R}_{F} have a particular structure

$$
\begin{aligned}
\mathcal{M}_{F} & =\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F}=\left(c \otimes I_{n}\right)\left[\begin{array}{lllll}
M^{(1)} & M^{(2)} & M^{(3)} & \cdots & M^{(\ell)}
\end{array}\right]+\Sigma \otimes I_{n} \\
\mathcal{R}_{F} & =\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}=c \otimes R
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { re } \\
& M^{(i)}=\left(P\left(s_{0}\right)\right)^{-1} \sum_{j=0}^{\ell-i} s_{0}^{j} P_{i+j} \in \mathbb{C}^{n \times n}, i=1, \ldots, \ell \\
& R=\left(P\left(s_{0}\right)\right)^{-1} B \in \mathbb{C}^{n \times m}, \\
& c=\left[\begin{array}{c}
1 \\
s_{0} \\
s_{0}^{2} \\
\vdots \\
s_{0}^{\ell-1}
\end{array}\right], \quad \Sigma=\left[\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \\
1 & 0 & \ddots & & \vdots \\
s_{0} & 1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
s_{0}^{\ell-2} & \cdots & s_{0} & 1 & 0
\end{array}\right] \in \mathbb{C}^{\ell \times \ell} .
\end{aligned}
$$

Approach 1

Theorem (Freund 2005)

Let $\mathcal{M}_{F}=\left(c \otimes I_{n}\right)\left[\begin{array}{lllll}M^{(1)} & M^{(2)} & M^{(3)} & \cdots & M^{(\ell)}\end{array}\right]+\Sigma \otimes I_{n}$, and $\mathcal{R}_{F}=c \otimes R$ with $c \in \mathbb{C}^{\ell}, c_{j} \neq 0, j=1, \ldots, \ell, R \in \mathbb{C}^{n \times m}, M^{(i)} \in \mathbb{C}^{n \times n}, i=1, \ldots, \ell, \Sigma \in \mathbb{C}^{\ell \times \ell}$. Let $\mathcal{W} \in \mathbb{C}^{\text {ln×r }}$ be any basis of the block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right), r \leqslant s m$. Then \mathcal{W} can be represented in the form

$$
\left[\begin{array}{c}
W U^{(1)} \\
W U^{(2)} \\
\vdots \\
W U^{(\ell)}
\end{array}\right] \quad \begin{aligned}
& \text { where } W \in \mathbb{C}^{n \times r} \text { and, for each } i=1,2, \ldots, \ell, . \\
& U^{(i)} \in \mathbb{C}^{r \times r} \text { is nonsingular and upper triangular. }
\end{aligned}
$$


```
- Let V be the matrix representing an orthonormal basis of span{W}
- Choose
- Then \mathscr{K}
```


Approach 1

Theorem (Freund 2005)

Let $\mathcal{M}_{F}=\left(c \otimes I_{n}\right)\left[\begin{array}{lllll}M^{(1)} & M^{(2)} & M^{(3)} & \cdots & M^{(\ell)}\end{array}\right]+\Sigma \otimes I_{n}$, and $\mathcal{R}_{F}=c \otimes R$ with $c \in \mathbb{C}^{\ell}, c_{j} \neq 0, j=1, \ldots, \ell, R \in \mathbb{C}^{n \times m}, M^{(i)} \in \mathbb{C}^{n \times n}, i=1, \ldots, \ell, \Sigma \in \mathbb{C}^{\ell \times \ell}$. Let $\mathcal{W} \in \mathbb{C}^{\text {ln×r }}$ be any basis of the block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right), r \leqslant s m$. Then \mathcal{W} can be represented in the form

- $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right) \subset \mathbb{C}^{\ell n}$ consists of ℓ 'copies' of the subspace $S_{r}=\operatorname{span}\{W\} \subset \mathbb{C}^{n}$.
- Let V be the matrix representing an orthonormal basis of $\operatorname{span}\{W\}$
- Choose - Then $\mathcal{K}_{S}\left(\mathcal{N}_{F}, \mathcal{R}_{F}\right) \subseteq$ range \mathcal{V}.

Approach 1

Theorem (Freund 2005)

Let $\mathcal{M}_{F}=\left(c \otimes I_{n}\right)\left[\begin{array}{lllll}M^{(1)} & M^{(2)} & M^{(3)} & \cdots & M^{(\ell)}\end{array}\right]+\Sigma \otimes I_{n}$, and $\mathcal{R}_{F}=c \otimes R$ with $c \in \mathbb{C}^{\ell}, c_{j} \neq 0, j=1, \ldots, \ell, R \in \mathbb{C}^{n \times m}, M^{(i)} \in \mathbb{C}^{n \times n}, i=1, \ldots, \ell, \Sigma \in \mathbb{C}^{l \times \ell}$. Let $\mathcal{W} \in \mathbb{C}^{\text {nn×r }}$ be any basis of the block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right), r \leqslant s m$. Then \mathcal{W} can be represented in the form

$$
\left[\begin{array}{c}
W U^{(1)} \\
W U^{(2)} \\
\vdots \\
W U^{(\ell)}
\end{array}\right] \quad \begin{aligned}
& \text { where } W \in \mathbb{C}^{n \times r} \text { and, for each } i=1,2, \ldots, \ell, \\
& U^{(i)} \in \mathbb{C}^{r \times r} \text { is nonsingular and upper triangular. }
\end{aligned}
$$

- $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right) \subset \mathbb{C}^{\ell n}$ consists of ℓ 'copies' of the subspace $S_{r}=\operatorname{span}\{W\} \subset \mathbb{C}^{n}$.
- Let V be the matrix representing an orthonormal basis of $\operatorname{span}\{W\}$.
- Choose

Approach 1

Theorem (Freund 2005)

Let $\mathcal{M}_{F}=\left(c \otimes I_{n}\right)\left[\begin{array}{lllll}M^{(1)} & M^{(2)} & M^{(3)} & \cdots & M^{(\ell)}\end{array}\right]+\Sigma \otimes I_{n}$, and $\mathcal{R}_{F}=c \otimes R$ with $c \in \mathbb{C}^{\ell}, c_{j} \neq 0, j=1, \ldots, \ell, R \in \mathbb{C}^{n \times m}, M^{(i)} \in \mathbb{C}^{n \times n}, i=1, \ldots, \ell, \Sigma \in \mathbb{C}^{\ell \times \ell}$. Let $\mathcal{W} \in \mathbb{C}^{\ell n \times r}$ be any basis of the block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right), r \leqslant s m$. Then \mathcal{W} can be represented in the form

$$
\left[\begin{array}{c}
W U^{(1)} \\
W U^{(2)} \\
\vdots \\
W U^{(\ell)}
\end{array}\right] \quad \begin{aligned}
& \text { where } W \in \mathbb{C}^{n \times r} \text { and, for each } i=1,2, \ldots, \ell, \\
& U^{(i)} \in \mathbb{C}^{r \times r} \text { is nonsingular and upper triangular. }
\end{aligned}
$$

- $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right) \subset \mathbb{C}^{\ell n}$ consists of ℓ 'copies' of the subspace $S_{r}=\operatorname{span}\{W\} \subset \mathbb{C}^{n}$.
- Let V be the matrix representing an orthonormal basis of $\operatorname{span}\{W\}$.
- Choose

$$
V=\operatorname{diag}(V, V, \ldots, V) \in \mathbb{C}^{\ell n \times \ell r}, V^{H} V=I_{r} .
$$

Approach 1

Theorem (Freund 2005)

Let $\mathcal{M}_{F}=\left(c \otimes I_{n}\right)\left[\begin{array}{lllll}M^{(1)} & M^{(2)} & M^{(3)} & \cdots & M^{(\ell)}\end{array}\right]+\Sigma \otimes I_{n}$, and $\mathcal{R}_{F}=c \otimes R$ with $c \in \mathbb{C}^{\ell}, c_{j} \neq 0, j=1, \ldots, \ell, R \in \mathbb{C}^{n \times m}, M^{(i)} \in \mathbb{C}^{n \times n}, i=1, \ldots, \ell, \Sigma \in \mathbb{C}^{\ell \times \ell}$. Let $\mathcal{W} \in \mathbb{C}^{\ell n \times r}$ be any basis of the block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right), r \leqslant s m$. Then \mathcal{W} can be represented in the form

$$
\left[\begin{array}{c}
W U^{(1)} \\
W U^{(2)} \\
\vdots \\
W U^{(\ell)}
\end{array}\right] \quad \begin{aligned}
& \text { where } W \in \mathbb{C}^{n \times r} \text { and, for each } i=1,2, \ldots, \ell, \\
& U^{(i)} \in \mathbb{C}^{r \times r} \text { is nonsingular and upper triangular. }
\end{aligned}
$$

- $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right) \subset \mathbb{C}^{\ell n}$ consists of ℓ 'copies' of the subspace $S_{r}=\operatorname{span}\{W\} \subset \mathbb{C}^{n}$.
- Let V be the matrix representing an orthonormal basis of $\operatorname{span}\{W\}$.
- Choose

$$
V=\operatorname{diag}(V, V, \ldots, V) \in \mathbb{C}^{\ell n \times \ell r}, V^{H} V=I_{r} .
$$

- Then $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right) \subseteq$ range \mathcal{V}.

Approach 1

- Project the first order system using \mathcal{V}

$$
\begin{aligned}
\left(\mathcal{V}^{H} \mathcal{E}_{F} \mathcal{V}\right) \mathcal{V}^{H} \frac{d}{d t} z(t)+\left(\mathcal{V}^{H} \mathcal{A}_{F} \mathcal{V}\right) \mathcal{V}^{H} z(t) & =\left(\mathcal{V}^{H} \mathcal{B}_{F}\right) u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\left(\mathcal{C}_{F} \mathcal{V}\right) \mathcal{V}^{H} z(t)
\end{aligned}
$$

with

$$
\begin{aligned}
& V^{H} \mathcal{B}_{F}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
V^{H} B
\end{array}\right], V^{H} \mathcal{A}_{F} \mathcal{V}=\left[\begin{array}{ccccc}
0 & -I_{n} & 0 & \cdots & 0 \\
0 & 0 & -I_{n} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & -I_{n} \\
V P_{0} V^{H} & V P_{1} V^{H} & V P_{2} V^{H} & \cdots & V P_{\ell-1} V^{H}
\end{array}\right], \\
& V^{H} \varepsilon_{F} \mathcal{V}=\left[\begin{array}{ll}
I_{(\ell-1) n} & V^{H} P_{\ell} V
\end{array}\right], \quad \mathcal{C}_{F} \mathcal{V}=\left[\begin{array}{llll}
C_{0} V & C_{1} V & \cdots & C_{\ell-1} V
\end{array}\right], \quad \mathcal{D}_{F}=D .
\end{aligned}
$$

- An ℓ th order reduced order system can be read off immediately.
- The first moments of the reduced order system match those of the original system.

Approach 1

- Project the first order system using \mathcal{V}

$$
\begin{aligned}
\left(\mathcal{V}^{H} \mathcal{E}_{F} \mathcal{V}\right) \mathcal{V}^{H} \frac{d}{d t} z(t)+\left(\mathcal{V}^{H} \mathcal{A}_{F} \mathcal{V}\right) \mathcal{V}^{H} z(t) & =\left(\mathcal{V}^{H} \mathcal{B}_{F}\right) u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\left(\mathfrak{C}_{F} \mathcal{V}\right) \mathcal{V}^{H} z(t)
\end{aligned}
$$

with

$$
\begin{aligned}
& V^{H} \mathcal{B}_{F}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
V^{H} B
\end{array}\right], v^{H} \mathcal{A}_{F} \mathcal{V}=\left[\begin{array}{ccccc}
0 & -I_{n} & 0 & \cdots & 0 \\
0 & 0 & -I_{n} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & -I_{n} \\
V P_{0} V^{H} & V P_{1} V^{H} & V P_{2} V^{H} & \cdots & V P_{\ell-1} V^{H}
\end{array}\right], \\
& V^{H} \varepsilon_{F} \mathcal{V}=\left[\begin{array}{ll}
I_{(\ell-1) n} & V^{H} P_{\ell} V
\end{array}\right], \quad \mathcal{C}_{F} \mathcal{V}=\left[\begin{array}{llll}
C_{0} V & C_{1} V & \cdots & C_{\ell-1} V
\end{array}\right], \quad \mathcal{D}_{F}=D .
\end{aligned}
$$

- An ℓ th order reduced order system can be read off immediately.
- The first moments of the reduced order system match those of the original system.

Approach 1

- Project the first order system using \mathcal{V}

$$
\begin{aligned}
\left(\mathcal{V}^{H} \mathcal{E}_{F} \mathcal{V}\right) \mathcal{V}^{H} \frac{d}{d t} z(t)+\left(\mathcal{V}^{H} \mathcal{A}_{F} \mathcal{V}\right) \mathcal{V}^{H} z(t) & =\left(\mathcal{V}^{H} \mathcal{B}_{F}\right) u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\left(\mathcal{C}_{F} \mathcal{V}\right) \mathcal{V}^{H} z(t)
\end{aligned}
$$

with

$$
\begin{aligned}
& V^{H} \mathcal{B}_{F}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
V^{H} B
\end{array}\right], V^{H} \mathcal{A}_{F} \mathcal{V}=\left[\begin{array}{ccccc}
0 & -I_{n} & 0 & \cdots & 0 \\
0 & 0 & -I_{n} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & -I_{n} \\
V P_{0} V^{H} & V P_{1} V^{H} & V P_{2} V^{H} & \cdots & V P_{\ell-1} V^{H}
\end{array}\right], \\
& V^{H} \varepsilon_{F} \mathcal{V}=\left[\begin{array}{ll}
I_{(\ell-1) n} & V^{H} P_{\ell} V
\end{array}\right], \quad \mathcal{C}_{F} \mathcal{V}=\left[\begin{array}{llll}
C_{0} V & C_{1} V & \cdots & C_{\ell-1} V
\end{array}\right], \quad \mathcal{D}_{F}=D .
\end{aligned}
$$

- An ℓ th order reduced order system can be read off immediately.
- The first moments of the reduced order system match those of the original system.

Approach 1 and 2

- Approach 1 and 2 use companion form linearization.
- Approach 1 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)$ with $\mathcal{M}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F}$ and $\mathcal{R}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$.
- Approach 2 uses block-Krylov subspace $\mathcal{K}_{S}\left(\mathcal{M}_{B}, \mathcal{R}_{B}\right)$ with $\mathcal{M}_{B}=\mathcal{A}_{B}^{-1} \varepsilon_{B}$ and $\mathcal{R}_{B}=\mathcal{A}_{B}^{-1} \mathcal{B}_{B}$.
- Neither $\lambda \varepsilon_{F}+\mathcal{A}_{F}$ nor $\lambda \varepsilon_{B}+\mathcal{A}_{B}$ is structure-preserving, e.g., $\left(-\lambda \varepsilon_{F}+\mathcal{A}_{F}\right)^{T} \neq \lambda \varepsilon_{F}+\mathcal{A}_{F}$ and $\left(-\lambda \varepsilon_{B}+\mathcal{A}_{B}\right)^{T} \neq \lambda \varepsilon_{B}+\mathcal{A}_{B}$.
- There are numerous other linearizations.

Approach 1 and 2

- Approach 1 and 2 use companion form linearization.
- Approach 1 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)$ with $\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F}$ and $\mathcal{R}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$.
- Approach 2 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{B}, \mathcal{R}_{B}\right)$ with $\mathcal{M}_{B}=\mathcal{A}_{B}^{-1} \mathcal{E}_{B}$ and $\mathcal{R}_{B}=\mathcal{A}_{B}^{-1} \mathcal{B}_{B}$
- Neither $\lambda \varepsilon_{F}+\mathcal{A}_{F}$ nor $\lambda \varepsilon_{B}+\mathcal{A}_{B}$ is structure-preserving, e.g. $\left(-\lambda \varepsilon_{F}+\mathcal{A}_{F}\right)^{T} \neq \lambda \varepsilon_{F}+\mathcal{A}_{F}$ and $\left(-\lambda \varepsilon_{B}+\mathcal{A}_{B}\right)^{T} \neq \lambda \varepsilon_{B}+\mathcal{A}_{B}$.
- There are numerous other linearizations.

Approach 1 and 2

- Approach 1 and 2 use companion form linearization.
- Approach 1 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)$ with $\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F}$ and $\mathcal{R}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$.
- Approach 2 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{B}, \mathcal{R}_{B}\right)$ with $\mathcal{M}_{B}=\mathcal{A}_{B}^{-1} \mathcal{E}_{B}$ and $\mathcal{R}_{B}=\mathcal{A}_{B}^{-1} \mathcal{B}_{B}$.
- Neither $\lambda \varepsilon_{F}+\mathcal{A}_{F}$ nor $\lambda \varepsilon_{B}+\mathcal{A}_{B}$ is structure-preserving, e.g.,
- There are numerous other linearizations.

Approach 1 and 2

- Approach 1 and 2 use companion form linearization.
- Approach 1 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)$ with $\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F}$ and $\mathcal{R}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$.
- Approach 2 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{B}, \mathcal{R}_{B}\right)$ with $\mathcal{M}_{B}=\mathcal{A}_{B}^{-1} \mathcal{E}_{B}$ and $\mathcal{R}_{B}=\mathcal{A}_{B}^{-1} \mathcal{B}_{B}$.
- Neither $\lambda \mathcal{E}_{F}+\mathcal{A}_{F}$ nor $\lambda \mathcal{E}_{B}+\mathcal{A}_{B}$ is structure-preserving, e.g., $\left(-\lambda \varepsilon_{F}+\mathcal{A}_{F}\right)^{T} \neq \lambda \varepsilon_{F}+\mathcal{A}_{F}$ and $\left(-\lambda \varepsilon_{B}+\mathcal{A}_{B}\right)^{T} \neq \lambda \varepsilon_{B}+\mathcal{A}_{B}$.
- There are numerous other linearizations.

Approach 1 and 2

- Approach 1 and 2 use companion form linearization.
- Approach 1 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{F}, \mathcal{R}_{F}\right)$ with $\mathcal{M}_{F}=\left(s_{0} \mathcal{E}_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{E}_{F}$ and $\mathcal{R}_{F}=\left(s_{0} \varepsilon_{F}+\mathcal{A}_{F}\right)^{-1} \mathcal{B}_{F}$.
- Approach 2 uses block-Krylov subspace $\mathcal{K}_{s}\left(\mathcal{M}_{B}, \mathcal{R}_{B}\right)$ with $\mathcal{M}_{B}=\mathcal{A}_{B}^{-1} \mathcal{E}_{B}$ and $\mathcal{R}_{B}=\mathcal{A}_{B}^{-1} \mathcal{B}_{B}$.
- Neither $\lambda \mathcal{E}_{F}+\mathcal{A}_{F}$ nor $\lambda \mathcal{E}_{B}+\mathcal{A}_{B}$ is structure-preserving, e.g., $\left(-\lambda \varepsilon_{F}+\mathcal{A}_{F}\right)^{T} \neq \lambda \varepsilon_{F}+\mathcal{A}_{F}$ and $\left(-\lambda \varepsilon_{B}+\mathcal{A}_{B}\right)^{T} \neq \lambda \varepsilon_{B}+\mathcal{A}_{B}$.
- There are numerous other linearizations.

Vector space $\mathbb{L}_{1}(P)$ of linearizations - Motivation

Systematic way to construct linearizations that allow for the preservation of structure and/or are better conditioned than the companion forms.
[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]
\Longrightarrow linearization of size $\ln \times \ln$

Vector space $\mathbb{L}_{1}(P)$ of linearizations - Motivation

Systematic way to construct linearizations that allow for the preservation of structure and/or are better conditioned than the companion forms.
[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]

$$
P(\lambda) x=\sum_{i=0}^{\ell} \lambda^{i} P_{i} x
$$

\Longrightarrow linearization of size $\ln \times \ln$

Vector space $\mathbb{L}_{1}(P)$ of linearizations - Motivation

Systematic way to construct linearizations that allow for the preservation of structure and/or are better conditioned than the companion forms.
[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]

$$
P(\lambda) x=\sum_{i=0}^{\ell} \lambda^{i} P_{i} x
$$

\Longrightarrow linearization of size $\ell n \times \ell n$

Vector space $\mathbb{L}_{1}(P)$ of linearizations - Motivation

Thus

$$
\mathcal{L}_{1}(\lambda)\left[\begin{array}{c}
\lambda^{\ell-1} x \\
\lambda^{\ell-2} x \\
\vdots \\
\lambda x \\
x
\end{array}\right]=\left[\begin{array}{c}
P(\lambda) x \\
0 \\
\vdots \\
0
\end{array}\right]
$$

$=e_{1} \otimes P(\lambda) x$.

Vector space $\mathbb{L}_{1}(P)$ of linearizations - Motivation

Thus

$$
\mathcal{L}_{1}(\lambda)\left[\begin{array}{c}
\lambda^{\ell-1} x \\
\lambda^{\ell-2} x \\
\vdots \\
\lambda x \\
x
\end{array}\right]=\left[\begin{array}{c}
P(\lambda) x \\
0 \\
\vdots \\
0
\end{array}\right]
$$

as

$$
\left[\begin{array}{c}
\lambda^{\ell-1} x \\
\lambda^{\ell-2} x \\
\vdots \\
\lambda x \\
x
\end{array}\right]=\left(\left[\begin{array}{c}
\lambda^{\ell-1} \\
\lambda^{\ell-2} \\
\vdots \\
\lambda \\
1
\end{array}\right] \otimes I_{n}\right) x=\left(\Lambda_{\ell} \otimes I_{n}\right) x \quad \text { and } \quad\left[\begin{array}{c}
P(\lambda) x \\
0 \\
\vdots \\
0
\end{array}\right]=e_{1} \otimes P(\lambda) x
$$

Vector space $\mathbb{L}_{1}(P)$ of linearizations - Motivation

Thus

$$
\mathcal{L}_{1}(\lambda)\left[\begin{array}{c}
\lambda^{\ell-1} x \\
\lambda^{\ell-2} x \\
\vdots \\
\lambda x \\
x
\end{array}\right]=\left[\begin{array}{c}
P(\lambda) x \\
0 \\
\vdots \\
0
\end{array}\right] \quad \Longleftrightarrow \quad \mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right) x=e_{1} \otimes P(\lambda) x
$$

as

$$
\left[\begin{array}{c}
\lambda^{\ell-1} x \\
\lambda^{\ell-2} x \\
\vdots \\
\lambda x \\
x
\end{array}\right]=\left(\left[\begin{array}{c}
\lambda^{\ell-1} \\
\lambda^{\ell-2} \\
\vdots \\
\lambda \\
1
\end{array}\right] \otimes I_{n}\right) x=\left(\Lambda_{\ell} \otimes I_{n}\right) x \quad \text { and } \quad\left[\begin{array}{c}
P(\lambda) x \\
0 \\
\vdots \\
0
\end{array}\right]=e_{1} \otimes P(\lambda) x
$$

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$
- There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$.

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

Definition [Ansatz space]

$\mathbb{L}_{1}(P)=\left\{\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} \mid \mathcal{E}, \mathcal{A} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda)\right.$ for some ansatz vector $\left.v \in \mathbb{R}^{\ell}\right\}$.

- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$
- There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$.

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

Definition [Ansatz space]
$\mathbb{L}_{1}(P)=\left\{\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} \mid \mathcal{E}, \mathcal{A} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda)\right.$ for some ansatz vector $\left.v \in \mathbb{R}^{\ell}\right\}$.

Theorem

- $\mathbb{L}_{1}(P)$ is a vector space over \mathbb{R} with $\operatorname{dim} \mathbb{L}_{1}(P)=\ell(\ell-1) n^{2}+\ell$.
- Almost all pencils in $\mathbb{L}_{1}(P)$ are strong linearizations of $P(\lambda)$.
- $\mathcal{L}(\lambda)=\left[v \otimes I_{n} W\right] \mathcal{L}_{1}(\lambda)$ for $v \neq 0$ and an arbitrary $W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ is a strong linearization of $P(\lambda)$, if $\left[v \otimes I_{n} W\right]$ is nonsingular.
- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$
- There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

Definition [Ansatz space]
$\mathbb{L}_{1}(P)=\left\{\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} \mid \mathcal{E}, \mathcal{A} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda)\right.$ for some ansatz vector $\left.v \in \mathbb{R}^{\ell}\right\}$.

Theorem

- $\mathbb{L}_{1}(P)$ is a vector space over \mathbb{R} with $\operatorname{dim} \mathbb{L}_{1}(P)=\ell(\ell-1) n^{2}+\ell$.
- Almost all pencils in $\mathbb{L}_{1}(P)$ are strong linearizations of $P(\lambda)$.
- $\mathcal{L}(\lambda)=\left[v \otimes I_{n} W\right] \mathcal{L}_{1}(\lambda)$ for $v \neq 0$ and an arbitrary $W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ is a strong linearization of $P(\lambda)$, if $\left[v \otimes I_{n} W\right]$ is nonsingular.
- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$
- There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

Definition [Ansatz space]

$\mathbb{L}_{1}(P)=\left\{\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} \mid \mathcal{E}, \mathcal{A} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda)\right.$ for some ansatz vector $\left.v \in \mathbb{R}^{\ell}\right\}$.

Theorem

- $\mathbb{L}_{1}(P)$ is a vector space over \mathbb{R} with $\operatorname{dim} \mathbb{L}_{1}(P)=\ell(\ell-1) n^{2}+\ell$.
- Almost all pencils in $\mathbb{L}_{1}(P)$ are strong linearizations of $P(\lambda)$.
- $\mathcal{L}(\lambda)=\left[v \otimes I_{n} W\right] \mathcal{L}_{1}(\lambda)$ for $v \neq 0$ and an arbitrary $W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ is a strong linearization of $P(\lambda)$, if $\left[v \otimes I_{n} W\right]$ is nonsingular.
- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$ - There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

Definition [Ansatz space]

 for some ansatz vector $\left.v \in \mathbb{R}^{\ell}\right\}$.

Theorem

- $\mathbb{L}_{1}(P)$ is a vector space over \mathbb{R} with $\operatorname{dim} \mathbb{L}_{1}(P)=\ell(\ell-1) n^{2}+\ell$.
- Almost all pencils in $\mathbb{L}_{1}(P)$ are strong linearizations of $P(\lambda)$.
- $\mathcal{L}(\lambda)=\left[v \otimes I_{n} W\right] \mathcal{L}_{1}(\lambda)$ for $v \neq 0$ and an arbitrary $W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ is a strong linearization of $P(\lambda)$, if $\left[v \otimes I_{n} W\right]$ is nonsingular.
- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$.
- There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$

Vector space $\mathbb{L}_{1}(P)$ of linearizations

Generalize $\mathcal{L}_{1}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=e_{1} \otimes P(\lambda)$ to

$$
\mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda) \quad \text { for } \quad \mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} .
$$

Definition [Ansatz space]
$\mathbb{L}_{1}(P)=\left\{\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A} \mid \mathcal{E}, \mathcal{A} \in \mathbb{R}^{\ell n \times \ell n}, \mathcal{L}(\lambda) \cdot\left(\Lambda_{\ell} \otimes I_{n}\right)=v \otimes P(\lambda)\right.$ for some ansatz vector $\left.v \in \mathbb{R}^{\ell}\right\}$.

Theorem

- $\mathbb{L}_{1}(P)$ is a vector space over \mathbb{R} with $\operatorname{dim} \mathbb{L}_{1}(P)=\ell(\ell-1) n^{2}+\ell$.
- Almost all pencils in $\mathbb{L}_{1}(P)$ are strong linearizations of $P(\lambda)$.
- $\mathcal{L}(\lambda)=\left[v \otimes I_{n} W\right] \mathcal{L}_{1}(\lambda)$ for $v \neq 0$ and an arbitrary $W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ is a strong linearization of $P(\lambda)$, if $\left[v \otimes I_{n} W\right]$ is nonsingular.
- Similar derivation for second companion form $\mathcal{L}_{2}(\lambda)$ gives $\mathbb{L}_{2}(P)$.
- There do exist linearizations that are not in $\mathbb{L}_{1}(P)$ or $\mathbb{L}_{2}(P)$.

Matrix Polynomials - (Strong) Linearization

Definition (Linearization)

A pencil $\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A}$ with $\mathcal{E}, \mathcal{A} \in \mathbb{R}^{k n \times k n}$ is called a linearization of $P(\lambda) \in \Pi_{\ell}^{n}$ if there exist unimodular matrix polynomials $E(\lambda), F(\lambda)$ such that

$$
E(\lambda) \mathcal{L}(\lambda) F(\lambda)=\left[\begin{array}{c|c}
P(\lambda) & 0 \\
\hline 0 & I_{(k-1) n}
\end{array}\right]
$$

for some $k \in \mathbb{N}$. A matrix polynomial $E(\lambda)$ is unimodular if $\operatorname{det} E(\lambda)$ is a nonzero constant.

For regular polynomials $P(\lambda)$

- any linearization: the Jordan structure of all finite eigenvalues is preserved
- strong linearization: the Jordan structure of the eigenvalue ∞ is preserved

Matrix Polynomials - (Strong) Linearization

Definition (Linearization)

A pencil $\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A}$ with $\mathcal{E}, \mathcal{A} \in \mathbb{R}^{k n \times k n}$ is called a linearization of $P(\lambda) \in \Pi_{\ell}^{n}$ if there exist unimodular matrix polynomials $E(\lambda), F(\lambda)$ such that

$$
E(\lambda) \mathcal{L}(\lambda) F(\lambda)=\left[\begin{array}{c|c}
P(\lambda) & 0 \\
\hline 0 & I_{(k-1) n}
\end{array}\right]
$$

for some $k \in \mathbb{N}$. A matrix polynomial $E(\lambda)$ is unimodular if $\operatorname{det} E(\lambda)$ is a nonzero constant.

Theorem

For regular polynomials $P(\lambda)$:

- any linearization: the Jordan structure of all finite eigenvalues is preserved.
- strong linearization: the Jordan structure of the eigenvalue ∞ is preserved.

Matrix Polynomials - (Strong) Linearization

Definition (Linearization)

A pencil $\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A}$ with $\mathcal{E}, \mathcal{A} \in \mathbb{R}^{k n \times k n}$ is called a linearization of $P(\lambda) \in \Pi_{\ell}^{n}$ if there exist unimodular matrix polynomials $E(\lambda), F(\lambda)$ such that

$$
E(\lambda) \mathcal{L}(\lambda) F(\lambda)=\left[\begin{array}{c|c}
P(\lambda) & 0 \\
\hline 0 & I_{(k-1) n}
\end{array}\right]
$$

for some $k \in \mathbb{N}$. A matrix polynomial $E(\lambda)$ is unimodular if $\operatorname{det} E(\lambda)$ is a nonzero constant.

Theorem

For regular polynomials $P(\lambda)$:

- any linearization: the Jordan structure of all finite eigenvalues is preserved.
- strong linearization: the Jordan structure of the eigenvalue ∞ is preserved.

Example

$$
\lambda P_{1}+P_{0}=\lambda\left[\begin{array}{ll}
4 & 5 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \quad \Longrightarrow \quad \lambda_{1}=\frac{1}{4}, \quad \lambda_{2}=\frac{3}{0}=\infty .
$$

Vector space $\mathbb{L}_{1}(P)$ of linearizations and Approach 1

- Freund considers

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t)
\end{aligned}
$$

- Interpret Freund's approach in terms of the first companion form $\mathcal{L}_{1}(\lambda)=\lambda \mathcal{E}_{1}+\mathcal{A}_{1}$

$$
y(t)=\mathcal{D}_{F} u(t)+\mathcal{C}_{1} \widetilde{z}(t) .
$$

with

Vector space $\mathbb{L}_{1}(P)$ of linearizations and Approach 1

- Freund considers

$$
\begin{aligned}
\mathcal{E}_{F} \frac{d}{d t} z(t)+\mathcal{A}_{F} z(t) & =\mathcal{B}_{F} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{F} z(t)
\end{aligned}
$$

- Interpret Freund's approach in terms of the first companion form $\mathcal{L}_{1}(\lambda)=\lambda \mathcal{E}_{1}+\mathcal{A}_{1}$

$$
\begin{aligned}
\mathcal{E}_{1} \frac{d}{d t} \widetilde{z}(t)+\mathcal{A}_{1} \widetilde{z}(t) & =\mathcal{B}_{1} u(t) \\
y(t) & =\mathcal{D}_{F} u(t)+\mathcal{C}_{1} \widetilde{z}(t)
\end{aligned}
$$

with

$$
\begin{aligned}
\widetilde{\boldsymbol{z}}(t) & =\mathcal{P}^{\top} \widetilde{\boldsymbol{z}}(t) \\
\mathcal{B}_{1} & =\mathcal{P}^{\top} \mathcal{B} \\
\mathcal{C}_{1} & =\mathcal{C}_{F} \mathcal{P}
\end{aligned}
$$

as $\mathcal{L}_{1}(\lambda)=\lambda \mathcal{E}_{1}+\mathcal{A}_{1}=\lambda \mathcal{P}^{T} \mathcal{E}_{F} \mathcal{P}+\mathcal{P}^{T} \mathcal{A}_{F} \mathcal{P}$ with $\mathcal{P}=\left[\begin{array}{ll}\quad . & I_{n} \\ I_{n}\end{array}\right]$.

Vector space $\mathbb{L}_{1}(P)$ of linearizations and Approach 1

- Approach is based on the Krylov subspace induced by $\mathcal{M}=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{1}$ and $\mathcal{R}=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{1}$.
- All linearizations in \mathbb{L}_{1} can be written as

with $v \in \mathbb{R}^{\ell}, W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ such that $\mathcal{T}=\left[v \otimes I_{n} W\right]$ is nonsingular.
- As

and

all linearization in \mathbb{L}_{1} will yield (theoretically) the same reduced order system.
- A similar observation holds for Approach 2.

Vector space $\mathbb{L}_{1}(P)$ of linearizations and Approach 1

- Approach is based on the Krylov subspace induced by $\mathcal{M}=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{1}$ and $\mathcal{R}=\left(\mathcal{L}_{1}\left(\mathcal{S}_{0}\right)\right)^{-1} \mathcal{B}_{1}$.
- All linearizations in \mathbb{L}_{1} can be written as

$$
\mathcal{L}(\lambda)=\left[\begin{array}{lll}
v \otimes I_{n} & W
\end{array}\right] \mathcal{L}_{1}(\lambda)=\mathcal{T} \mathcal{L}_{1}(\lambda)=\lambda \mathcal{T} \mathcal{E}_{1}+\mathcal{T} \mathcal{A}_{1}
$$

with $v \in \mathbb{R}^{\ell}, W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ such that $\mathcal{T}=\left[v \otimes I_{n} W\right]$ is nonsingular.

- As

and

all linearization in \mathbb{L}_{1} will yield (theoretically) the same reduced order system.
- A similar observation holds for Approach 2.

Vector space $\mathbb{L}_{1}(P)$ of linearizations and Approach 1

- Approach is based on the Krylov subspace induced by $\mathcal{M}=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{1}$ and $\mathcal{R}=\left(\mathcal{L}_{1}\left(S_{0}\right)\right)^{-1} \mathcal{B}_{1}$.
- All linearizations in \mathbb{L}_{1} can be written as

$$
\mathcal{L}(\lambda)=\left[\begin{array}{lll}
v \otimes I_{n} & W
\end{array}\right] \mathcal{L}_{1}(\lambda)=\mathcal{T} \mathcal{L}_{1}(\lambda)=\lambda \mathcal{T} \mathcal{E}_{1}+\mathcal{T} \mathcal{A}_{1}
$$

with $v \in \mathbb{R}^{\ell}, W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ such that $\mathcal{T}=\left[v \otimes I_{n} W\right]$ is nonsingular.

- As

$$
\left(\mathcal{T} \mathcal{E}_{1}\right) \frac{d}{d t} z(t)+\left(\mathcal{T} \mathcal{A}_{1}\right) z(t)=\left(\mathcal{T} \mathcal{B}_{1}\right) u(t)
$$

and

$$
\begin{aligned}
\left(\mathcal{L}\left(s_{0}\right)\right)^{-1}\left(\mathcal{T} \mathcal{E}_{1}\right) & =\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{1}=\mathcal{N}, \\
\left(\mathcal{L}\left(s_{0}\right)\right)^{-1}\left(\mathcal{T B}_{1}\right) & =\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{1}=\mathcal{R},
\end{aligned}
$$

all linearization in \mathbb{L}_{1} will yield (theoretically) the same reduced order system.

- A similar observation holds for Approach 2.

Vector space $\mathbb{L}_{1}(P)$ of linearizations and Approach 1

- Approach is based on the Krylov subspace induced by $\mathcal{M}=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{1}$ and $\mathcal{R}=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{1}$.
- All linearizations in \mathbb{L}_{1} can be written as

$$
\mathcal{L}(\lambda)=\left[v \otimes I_{n} W\right] \mathcal{L}_{1}(\lambda)=\mathcal{T} \mathcal{L}_{1}(\lambda)=\lambda \mathcal{T} \mathcal{E}_{1}+\mathcal{T} \mathcal{A}_{1}
$$

with $v \in \mathbb{R}^{\ell}, W \in \mathbb{R}^{\ell n \times(\ell-1) n}$ such that $\mathcal{T}=\left[v \otimes I_{n} W\right]$ is nonsingular.

- As

$$
\left(\mathcal{T} \mathcal{E}_{1}\right) \frac{d}{d t} z(t)+\left(\mathcal{T} \mathcal{A}_{1}\right) z(t)=\left(\mathcal{T} \mathcal{B}_{1}\right) u(t)
$$

and

$$
\begin{aligned}
&\left(\mathcal{L}\left(s_{0}\right)\right)^{-1}\left(\mathcal{T} \mathcal{E}_{1}\right)=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{1}=\mathcal{M} \\
&\left(\mathcal{L}\left(s_{0}\right)\right)^{-1}\left(\mathcal{T} \mathcal{B}_{1}\right)=\left(\mathcal{L}_{1}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{1}=\mathcal{R}
\end{aligned}
$$

all linearization in \mathbb{L}_{1} will yield (theoretically) the same reduced order system.

- A similar observation holds for Approach 2.

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

> Gyroscopic system $P(\lambda)=P(-\lambda)^{T} \in \Pi_{2}^{n}$
> $P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{T}, G=-G^{T}, K=K^{T}, \quad M, G, K \in \mathbb{R}^{n \times n}$.
is not structure preserving as $\mathcal{L}_{1}(\lambda) \neq \mathcal{L}_{1}(-\lambda)^{\top}$.

is a structure-preserving linearization $\left(\mathcal{L}(\lambda)=\mathcal{L}(-\lambda)^{T}\right)$.

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

Gyroscopic system $P(\lambda)=P(-\lambda)^{T} \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.

Companion form in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}_{1}(\lambda)=\left[\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
G & K \\
-1 & 0
\end{array}\right]
$$

is not structure preserving as $\mathcal{L}_{1}(\lambda) \neq \mathcal{L}_{1}(-\lambda)^{\top}$.
is a structure-preserving linearization $\left(\mathcal{L}(\lambda)=\mathcal{L}(-\lambda)^{T}\right)$.

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

Gyroscopic system $P(\lambda)=P(-\lambda)^{T} \in \Pi_{2}^{n}$
$P(\lambda)=\lambda^{2} M+\lambda G+K, \quad M=M^{\top}, G=-G^{\top}, K=K^{\top}, \quad M, G, K \in \mathbb{R}^{n \times n}$.

Companion form in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}_{1}(\lambda)=\left[\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
G & K \\
-1 & 0
\end{array}\right]
$$

is not structure preserving as $\mathcal{L}_{1}(\lambda) \neq \mathcal{L}_{1}(-\lambda)^{T}$.

Structured linearization in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}(\lambda)=\lambda\left[\begin{array}{cc}
0 & -M \\
M & G
\end{array}\right]+\left[\begin{array}{cc}
M & 0 \\
0 & K
\end{array}\right] \in \mathbb{L}_{1}(P)
$$

is a structure-preserving linearization $\left(\mathcal{L}(\lambda)=\mathcal{L}(-\lambda)^{\top}\right)$.

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

$$
\begin{aligned}
& \text { Robot } P(\lambda)=P(-\lambda)^{T} \in \Pi_{4}^{n} \\
& P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4 .
\end{aligned}
$$

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

$$
\begin{aligned}
& \text { Robot } P(\lambda)=P(-\lambda)^{T} \in \Pi_{4}^{n} \\
& P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4 .
\end{aligned}
$$

Companion form in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}_{1}(\lambda)=\lambda\left[\begin{array}{cccc}
P_{4} & 0 & 0 & 0 \\
0 & I_{n} & 0 & 0 \\
0 & 0 & I_{n} & 0 \\
0 & 0 & 0 & I_{n}
\end{array}\right]+\left[\begin{array}{cccc}
P_{3} & P_{2} & P_{1} & P_{0} \\
-I_{n} & 0 & 0 & 0 \\
0 & -I_{n} & 0 & 0 \\
0 & 0 & -I_{n} & 0
\end{array}\right]
$$

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

Robot $P(\lambda)=P(-\lambda)^{T} \in \Pi_{4}^{n}$
$P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4$.
Companion form in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}_{1}(\lambda)=\lambda\left[\begin{array}{cccc}
P_{4} & 0 & 0 & 0 \\
0 & I_{n} & 0 & 0 \\
0 & 0 & I_{n} & 0 \\
0 & 0 & 0 & I_{n}
\end{array}\right]+\left[\begin{array}{cccc}
P_{3} & P_{2} & P_{1} & P_{0} \\
-I_{n} & 0 & 0 & 0 \\
0 & -I_{n} & 0 & 0 \\
0 & 0 & -I_{n} & 0
\end{array}\right]
$$

Structured linearizations in $\mathbb{L}_{1}(P)$
$\mathcal{L}(\lambda)=\lambda\left[\begin{array}{cccc}0 & -P_{4} & 0 & -P_{4} \\ P_{4} & P_{3} & P_{4} & P_{3} \\ 0 & -P_{4} & P_{1}-P_{3} & P_{0}-P_{2} \\ P_{4} & P_{3} & P_{2}-P_{0} & P_{1}\end{array}\right]+\left[\begin{array}{cccc}P_{4} & 0 & P_{4} & 0 \\ 0 & P_{2}-P_{4} & P_{1}-P_{3} & P_{0} \\ P_{4} & P_{3}-P_{1} & P_{2}-P_{0} & 0 \\ 0 & P_{0} & 0 & P_{0}\end{array}\right]$

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations


```
P0=1/100*gallery('poisson',10);
P2=randn(100); P2=(P2+P2')/30;
P4=eye(n);
P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';
```


Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

$\mathcal{L}_{1}(\lambda)$ and $\mathcal{L}(\lambda)$ may be very differently conditioned.

P0=1/100*gallery ('poisson', 10) ; $\mathrm{P} 2=\mathrm{randn}(100)$; $\mathrm{P} 2=\left(\mathrm{P} 2+\mathrm{P} 2{ }^{\prime}\right) / 30$; P4=eye(n);
P1=rand (100); P1=P1-P1'; $P 3=r \operatorname{andn}(100)$; $P 3=P 3-P 3$ ';

Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

$\mathcal{L}_{1}(\lambda)$ and $\mathcal{L}(\lambda)$ may be very differently conditioned.

```
L}(\lambda)\mathrm{ is not (block) sparse,
while }\mp@subsup{\mathcal{L}}{1}{}(\lambda)\mathrm{ is.
P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/5;
P4=.5*gallery('poisson',10);
P1=rand(100);P1=P1-P1';
P3=randn(100);P3=P3-P3';
```


Vector space $\mathbb{L}_{1}(P)$ - Structured Linearizations

$\mathcal{L}_{1}(\lambda)$ and $\mathcal{L}(\lambda)$ may be very differently conditioned. $\mathcal{L}(\lambda)$ is not (block) sparse, while $\mathcal{L}_{1}(\lambda)$ is.

P0=1/100*gallery ('poisson', 10) ; $\mathrm{P} 2=\mathrm{randn}(100)$; $\mathrm{P} 2=(\mathrm{P} 2+\mathrm{P} 2$ ') $/ 5$; P4=.5*gallery('poisson', 10); P1=rand(100); P1=P1-P1'; $P 3=$ randn (100); P3=P3-P3';

Structured Linearization not in $\mathbb{L}_{1}(P)$

$$
\begin{aligned}
& \text { Robot } P(\lambda)=P(-\lambda)^{T} \in \Pi_{4}^{n} \\
& P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4 .
\end{aligned}
$$

$$
\mathcal{V}(\lambda) \mathcal{L}(\lambda) \mathcal{U}(\lambda)=\operatorname{diag}\left(I_{4 n}, P(\lambda)\right)
$$

Structured Linearization not in $\mathbb{L}_{1}(P)$

Robot $P(\lambda)=P(-\lambda)^{T} \in \Pi_{4}^{n}$
$P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4$.
(Structured) Linearization not in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}(\lambda)=\left[\begin{array}{ccc|cc}
P_{4} & 0 & 0 & I & 0 \\
0 & -P_{2}-\lambda P_{3} & 0 & \lambda I & I \\
0 & 0 & P_{0}+\lambda P_{1} & 0 & \lambda I \\
\hline I & -\lambda I & 0 & 0 & 0 \\
0 & I & -\lambda I & 0 & 0
\end{array}\right]=\lambda \varepsilon+\mathcal{A}
$$

$$
\mathcal{V}(\lambda) \mathcal{L}(\lambda) \mathcal{U}(\lambda)=\operatorname{diag}\left(I_{4 n}, P(\lambda)\right)
$$

Structured Linearization not in $\mathbb{L}_{1}(P)$

Robot $P(\lambda)=P(-\lambda)^{T} \in \Pi_{4}^{n}$

$$
\begin{equation*}
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0}, \quad P_{i}=(-1)^{i} P_{i}^{T}, \quad P_{i} \in \mathbb{R}^{n \times n}, i=0, \ldots, 4 \tag{4.}
\end{equation*}
$$

(Structured) Linearization not in $\mathbb{L}_{1}(P)$

$$
\mathcal{L}(\lambda)=\left[\begin{array}{ccc|cc}
P_{4} & 0 & 0 & I & 0 \\
0 & -P_{2}-\lambda P_{3} & 0 & \lambda I & I \\
0 & 0 & P_{0}+\lambda P_{1} & 0 & \lambda I \\
\hline 1 & -\lambda I & 0 & 0 & 0 \\
0 & 1 & -\lambda I & 0 & 0
\end{array}\right]=\lambda \mathcal{E}+\mathcal{A} \quad \text { Note }+\mathcal{E}, \mathcal{A} \in \mathbb{R}^{5 n \times 5 n!}
$$

as

$$
\mathcal{V}(\lambda) \mathcal{L}(\lambda) \mathcal{U}(\lambda)=\operatorname{diag}\left(I_{4 n}, P(\lambda)\right)
$$

for
$\mathcal{V}(\lambda)=\left[\begin{array}{ccccc}I_{n} & 0 & 0 & -P_{4} & -\lambda P_{4} \\ -\lambda I_{n} & I_{n} & 0 & \lambda P_{4} & \lambda^{2} P_{4}+\lambda P_{3}+P_{2} \\ 0 & 0 & 0 & I_{n} & 0 \\ 0 & 0 & 0 & 0 & I_{n} \\ \lambda^{2} \operatorname{In} & -\lambda \operatorname{In} & \operatorname{In} & -\lambda^{2} P_{4} & -\lambda^{3} P_{4}-\lambda^{2} P_{3}-\lambda P_{2}\end{array}\right], U(\lambda)=\left[\begin{array}{ccc}0 & 0 & I_{n} \\ 0 & \lambda I_{n} & 0 \\ 0 & I_{n} I_{n} \\ I_{n} & 0 & 0 \\ 0 & I_{n} & 0 \\ 0 & 0 & \lambda^{3} P_{4}+\lambda^{2} P_{3}+\lambda P_{2}\end{array}\right]$

Technische
Universität
Braunschweig
$\operatorname{det} \mathcal{U}(\lambda)=\operatorname{det} \mathcal{V}(\lambda)=1$.
H. Faßbender | MOR of Higher Order Systems

Block Kronecker Ansatz space \mathbb{G}_{r+1}

Definition [Block Kronecker Ansatz space]

Let $P(\lambda) \in \Pi_{\ell}^{n}$ with $\ell=r+s+1$. The block Kronecker ansatz space $\mathbb{G}_{r+1}(P)$ is the set of all $\ell n \times \ell n$ matrix pencils $\mathbb{L}(\lambda)$ that satisfy the block Kronecker ansatz equation

- $\mathbb{G}_{r+1}(P)$ is a vector space over \mathbb{R} of dimension $(\ell-1) \ell n^{2}+1$
- Thus, $\mathbb{L}_{1}(P) \neq \mathbb{G}_{r+1}(P)$
- Almost all pencils in $\mathbb{G}_{r+1}(P)$ are strong linearizations of $P(\lambda)$

Block Kronecker Ansatz space \mathbb{G}_{r+1}

Definition [Block Kronecker Ansatz space]

Let $P(\lambda) \in \Pi_{\ell}^{n}$ with $\ell=r+s+1$. The block Kronecker ansatz space $\mathbb{G}_{r+1}(P)$ is the set of all $\ell n \times \ell n$ matrix pencils $\mathbb{L}(\lambda)$ that satisfy the block Kronecker ansatz equation

- $\mathbb{G}_{r+1}(P)$ is a vector space over \mathbb{R} of dimension $(\ell-1) \ell n^{2}+1$.
- Thus, $\mathbb{L}_{1}(P) \neq \mathbb{G}_{r+1}(P)$
- Almost all pencils in $\mathbb{G}_{r+1}(P)$ are strong linearizations of $P(\lambda)$

Block Kronecker Ansatz space \mathbb{G}_{r+1}

Definition [Block Kronecker Ansatz space]

Let $P(\lambda) \in \Pi_{\ell}^{n}$ with $\ell=r+s+1$. The block Kronecker ansatz space $\mathbb{G}_{r+1}(P)$ is the set of all $\ell n \times \ell n$ matrix pencils $\mathbb{L}(\lambda)$ that satisfy the block Kronecker ansatz equation

- $\mathbb{G}_{r+1}(P)$ is a vector space over \mathbb{R} of dimension $(\ell-1) \ell n^{2}+1$.
- Thus, $\mathbb{L}_{1}(P) \neq \mathbb{G}_{r+1}(P)$.
- Almost all pencils in $\mathbb{G}_{r+1}(P)$ are strong linearizations of $P(\lambda)$

Block Kronecker Ansatz space \mathbb{G}_{r+1}

Definition [Block Kronecker Ansatz space]

Let $P(\lambda) \in \Pi_{\ell}^{n}$ with $\ell=r+s+1$. The block Kronecker ansatz space $\mathbb{G}_{r+1}(P)$ is the set of all $\ell n \times \ell n$ matrix pencils $\mathbb{L}(\lambda)$ that satisfy the block Kronecker ansatz equation

- $\mathbb{G}_{r+1}(P)$ is a vector space over \mathbb{R} of dimension $(\ell-1) \ell n^{2}+1$.
- Thus, $\mathbb{L}_{1}(P) \neq \mathbb{G}_{r+1}(P)$.
- Almost all pencils in $\mathbb{G}_{r+1}(P)$ are strong linearizations of $P(\lambda)$.

Higher order system and block Kronecker linearizations

Robot $P(\lambda) \in \Pi_{4}^{n}$

$$
\begin{gathered}
P_{4} \frac{d^{4}}{d t^{4}} x(t)+P_{3} \frac{d^{3}}{d t^{3}} x(t)+P_{2} \frac{d^{2}}{d t^{2}} x(t)+P_{1} \frac{d}{d t} x(t)+P_{0} x(t)=B u(t) \\
D u(t)+C_{3} \frac{d^{3}}{d t^{3}} x(t)+C_{2} \frac{d^{2}}{d t^{2}} x(t)+C_{1} \frac{d}{d t} x(t)+C_{0} x(t)=y(t)
\end{gathered}
$$

The linearization

does not give an equivalent first order ODE of the form $\mathcal{E} \frac{d}{d t} z(t)+\mathcal{A} z(t)=\mathcal{B} u(t)$

Higher order system and block Kronecker linearizations

Robot $P(\lambda) \in \Pi_{4}^{n}$

$$
\begin{array}{r}
P_{4} \frac{d^{4}}{d t^{4}} x(t)+P_{3} \frac{d^{3}}{d t^{3}} x(t)+P_{2} \frac{d^{2}}{d t^{2}} x(t)+P_{1} \frac{d}{d t} x(t)+P_{0} x(t)=B u(t) \\
D u(t)+C_{3} \frac{d^{3}}{d t^{3}} x(t)+C_{2} \frac{d^{2}}{d t^{2}} x(t)+C_{1} \frac{d}{d t} x(t)+C_{0} x(t)=y(t)
\end{array}
$$

The linearization

$$
\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A}=\left[\begin{array}{ccc|cc}
P_{4} & 0 & 0 & I & 0 \\
0 & -P_{2}-\lambda P_{3} & 0 & \lambda I & I \\
0 & 0 & P_{0}+\lambda P_{1} & 0 & \lambda I \\
\hline I & -\lambda I & 0 & 0 & 0 \\
0 & I & -\lambda I & 0 & 0
\end{array}\right]
$$

does not give an equivalent first order ODE of the form $\mathcal{E} \frac{d}{d t} z(t)+\mathcal{A} z(t)=\mathcal{B} u(t)$

Higher order system and block Kronecker linearizations

Robot $P(\lambda) \in \Pi_{4}^{n}$

$$
\begin{array}{r}
P_{4} \frac{d^{4}}{d t^{4}} x(t)+P_{3} \frac{d^{3}}{d t^{3}} x(t)+P_{2} \frac{d^{2}}{d t^{2}} x(t)+P_{1} \frac{d}{d t} x(t)+P_{0} x(t)=B u(t) \\
D u(t)+C_{3} \frac{d^{3}}{d t^{3}} x(t)+C_{2} \frac{d^{2}}{d t^{2}} x(t)+C_{1} \frac{d}{d t} x(t)+C_{0} x(t)=y(t)
\end{array}
$$

The linearization

$$
\mathcal{L}(\lambda)=\lambda \mathcal{E}+\mathcal{A}=\left[\begin{array}{ccc|cc}
P_{4} & 0 & 0 & I & 0 \\
0 & -P_{2}-\lambda P_{3} & 0 & \lambda I & I \\
0 & 0 & P_{0}+\lambda P_{1} & 0 & \lambda I \\
\hline I & -\lambda I & 0 & 0 & 0 \\
0 & I & -\lambda I & 0 & 0
\end{array}\right]
$$

does not give an equivalent first order ODE of the form $\mathcal{E} \frac{d}{d t} z(t)+\mathcal{A} z(t)=\mathcal{B} u(t)$
as $\left[\begin{array}{lllll}\lambda^{2} I_{n} & -\lambda I n & I n & 0 & 0\end{array}\right]\left[\begin{array}{ccc|cc}P_{4} & 0 & 0 & I & 0 \\ 0 & -P_{2}-\lambda P_{3} & 0 & \lambda I & I \\ 0 & 0 & P_{0}+\lambda P_{1} & 0 & \lambda I \\ \hline I & -\lambda I & 0 & 0 & 0 \\ 0 & I & -\lambda I & 0 & 0\end{array}\right]\left[\begin{array}{c}\lambda^{2} I_{n} \\ \lambda I n \\ I_{n} \\ 0 \\ 0\end{array}\right]=P(\lambda)$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

In \mathbb{L}_{1} all linearizations are based on $\mathcal{L}_{1}(\lambda)$, the linearizations in \mathbb{G}_{r+1} are based on

$$
\mathcal{L}_{K}(\lambda)=\lambda \mathcal{E}_{K}+\mathcal{A}_{K}
$$

$$
=\left[\begin{array}{cc}
\Sigma_{r}(\lambda) & L_{r}^{T}(\lambda) \\
L_{s}(\lambda) & 0
\end{array}\right]
$$

with $\ell=r+s+1, \Sigma_{r}(\lambda) \in \mathbb{C}^{(r+1) n \times s n}$, and $L_{j}(\lambda) \in \mathbb{C}^{j n \times(j+1) n}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- We can find $\mathcal{B}_{K}, \mathcal{C}_{K}$ such that

$$
G(s)=D+\sum_{j=0}^{\ell-1} C_{j}\left((P(s))^{-1} B=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}\right.
$$

- Introduce shift $s_{0} \in \mathbb{C}$ such that $\mathcal{L}_{K}\left(s_{0}\right)=s_{0} \varepsilon_{K}+\mathcal{A}_{K}$ is nonsingular. Then
- Compute basis of $\mathcal{K}_{s}\left(\mathcal{M}_{K}, \mathcal{R}_{K}\right)$. Represent the basis in block form

- Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- We can find $\mathcal{B}_{K}, \mathcal{C}_{K}$ such that

$$
G(s)=D+\sum_{j=0}^{\ell-1} C_{j}\left((P(s))^{-1} B=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}\right.
$$

- Introduce shift $s_{0} \in \mathbb{C}$ such that $\mathcal{L}_{K}\left(s_{0}\right)=s_{0} \mathcal{E}_{K}+\mathcal{A}_{K}$ is nonsingular. Then

$$
G(s)=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}=\mathcal{D}_{K}+\mathcal{C}_{K}\left(I+\left(s-s_{0}\right) \mathcal{M}_{K}\right)^{-1} \mathcal{R}_{K}
$$

with

$$
\mathcal{M}_{K}=\left(\mathcal{L}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{K}, \quad \mathcal{R}_{K}=\left(\mathcal{L}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{K} .
$$

- Compute basis of $\mathcal{K}_{s}\left(\mathcal{N}_{K}, \mathcal{R}_{K}\right)$. Represent the basis in block form

- Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- We can find $\mathcal{B}_{K}, \mathcal{C}_{K}$ such that

$$
G(s)=D+\sum_{j=0}^{\ell-1} C_{j}\left((P(s))^{-1} B=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}\right.
$$

- Introduce shift $s_{0} \in \mathbb{C}$ such that $\mathcal{L}_{K}\left(s_{0}\right)=s_{0} \mathcal{E}_{K}+\mathcal{A}_{K}$ is nonsingular. Then

$$
G(s)=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}=\mathcal{D}_{K}+\mathcal{C}_{K}\left(I+\left(s-s_{0}\right) \mathcal{M}_{K}\right)^{-1} \mathcal{R}_{K}
$$

with

$$
\mathcal{M}_{K}=\left(\mathcal{L}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{K}, \quad \mathcal{R}_{K}=\left(\mathcal{L}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{K} .
$$

- Compute basis of $\mathcal{K}_{s}\left(\mathcal{N}_{K}, \mathcal{R}_{K}\right)$. Represent the basis in block form

$$
\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{\ell}
\end{array}\right], \quad W_{j} \in \mathbb{C}^{n \times r} .
$$

- Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- We can find $\mathcal{B}_{K}, \mathcal{C}_{K}$ such that

$$
G(s)=D+\sum_{j=0}^{\ell-1} C_{j}\left((P(s))^{-1} B=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}\right.
$$

- Introduce shift $s_{0} \in \mathbb{C}$ such that $\mathcal{L}_{K}\left(s_{0}\right)=s_{0} \mathcal{E}_{K}+\mathcal{A}_{K}$ is nonsingular. Then

$$
G(s)=\mathcal{D}_{K}+\mathcal{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \mathcal{B}_{K}=\mathcal{D}_{K}+\mathcal{C}_{K}\left(I+\left(s-s_{0}\right) \mathcal{M}_{K}\right)^{-1} \mathcal{R}_{K}
$$

with

$$
\mathcal{M}_{K}=\left(\mathcal{L}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{E}_{K}, \quad \mathcal{R}_{K}=\left(\mathcal{L}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{B}_{K} .
$$

- Compute basis of $\mathcal{K}_{s}\left(\mathcal{M}_{K}, \mathcal{R}_{K}\right)$. Represent the basis in block form

$$
\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{\ell}
\end{array}\right], \quad W_{j} \in \mathbb{C}^{n \times r} .
$$

- Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{\boldsymbol{W}_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- Any linearization in \mathbb{G}_{r+1} can be expressed as

$$
\tilde{\mathcal{L}}_{K}(\lambda)=\mathcal{T}_{1} \mathcal{L}_{K}(\lambda) \mathcal{T}_{2} \quad \text { with } \mathcal{T}_{1}=\left[\begin{array}{c|c}
I_{(r+1) n} & B_{1} \\
\hline 0 & C_{1}
\end{array}\right], \quad \mathcal{T}_{2}=\left[\begin{array}{c|c}
I_{(s+1) n} & 0 \\
\hline B_{2} & C_{2}
\end{array}\right]
$$

and $B_{1} \in \mathbb{R}^{(r+1) n \times s n}, B_{2} \in \mathbb{R}^{r n \times(s+1) n}, C_{1} \in \mathbb{R}^{s n \times s n}, C_{2} \in \mathbb{R}^{r n \times r n}$.

```
\(G(s)=\mathcal{D}_{K}+\widetilde{C}_{K}\left(\mathcal{L}_{K}(s)\right)^{-1} \widetilde{\mathcal{B}}_{K}\) with \(\mathcal{C}_{K}=\mathcal{C}_{K} \mathcal{J}_{2}, \widetilde{\mathcal{B}}_{K}=\mathcal{T}_{1} \mathcal{B}_{K}\)
```

-$G(s)=\mathcal{D}_{K}+\widetilde{C}_{K}\left(1+\left(s-s_{0}\right) \tilde{\mathcal{M}}_{K}\right)^{-1} \widetilde{\mathcal{R}}_{K}$ with

- Thus, $\mathcal{K}\left(\widetilde{\mathcal{M}}_{K}, \widetilde{\mathcal{R}}_{k}\right)=\mathcal{T}_{2}^{-1} \mathcal{K}\left(\mathcal{M}_{K}, \mathcal{R}_{k}\right)$.
- As beiore: Compute basis of $\mathbb{K}_{S}\left(\widetilde{N}_{K}, \widetilde{\mathbb{R}}_{K}\right)$. Represent it in block form with blocks $W_{j} \in \mathbb{C}^{n \times r}, j=1, \ldots, \ell$. Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- Any linearization in \mathbb{G}_{r+1} can be expressed as

$$
\widetilde{\mathcal{L}}_{K}(\lambda)=\mathcal{T}_{1} \mathcal{L}_{K}(\lambda) \mathcal{T}_{2} \quad \text { with } \mathcal{T}_{1}=\left[\begin{array}{c|c}
I_{(r+1) n} & B_{1} \\
\hline 0 & C_{1}
\end{array}\right], \quad \mathcal{T}_{2}=\left[\begin{array}{c|c}
I_{(s+1) n} & 0 \\
\hline B_{2} & C_{2}
\end{array}\right]
$$

and $B_{1} \in \mathbb{R}^{(r+1) n \times s n}, B_{2} \in \mathbb{R}^{r n \times(s+1) n}, C_{1} \in \mathbb{R}^{s n \times s n}, C_{2} \in \mathbb{R}^{r n \times r n}$.

- $G(s)=\mathcal{D}_{K}+\widetilde{\mathcal{C}}_{K}\left(\widetilde{\mathcal{L}}_{K}(s)\right)^{-1} \widetilde{\mathcal{B}}_{K}$ with $\widetilde{\mathcal{C}}_{K}=\mathcal{C}_{K} \mathcal{T}_{2}, \widetilde{\mathcal{B}}_{K}=\mathcal{T}_{1} \mathcal{B}_{K}$.
- $G(s)=\mathcal{D}_{K}+C_{K}\left(I+\left(s-s_{0}\right) \mathcal{M}_{K}\right)^{-1} \mathcal{R}_{K}$ with
- Thus, $\mathcal{K}\left(\widetilde{\mathcal{M}}_{K}, \widetilde{\mathcal{R}}_{k}\right)=\mathcal{T}_{2}^{-1} \mathcal{K}\left(\mathcal{M}_{K}, \mathcal{R}_{k}\right)$
- As before: Compute basis of $\mathcal{K}_{s}\left(\mathcal{N}_{K}, \mathcal{R}_{K}\right)$. Represent it in block form with blocks $W_{j} \in \mathbb{C}^{n \times r}, j=1, \ldots, \ell$. Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- Any linearization in \mathbb{G}_{r+1} can be expressed as

$$
\widetilde{\mathcal{L}}_{K}(\lambda)=\mathcal{T}_{1} \mathcal{L}_{K}(\lambda) \mathcal{T}_{2} \quad \text { with } \mathcal{T}_{1}=\left[\begin{array}{c|c}
I_{(r+1) n} & B_{1} \\
\hline 0 & C_{1}
\end{array}\right], \quad \mathcal{T}_{2}=\left[\begin{array}{c|c}
I_{(s+1) n} & 0 \\
\hline B_{2} & C_{2}
\end{array}\right]
$$

and $B_{1} \in \mathbb{R}^{(r+1) n \times s n}, B_{2} \in \mathbb{R}^{r n \times(s+1) n}, C_{1} \in \mathbb{R}^{s n \times s n}, C_{2} \in \mathbb{R}^{r n \times r n}$.

- $G(s)=\mathcal{D}_{K}+\widetilde{\mathfrak{C}}_{K}\left(\widetilde{\mathcal{L}}_{K}(s)\right)^{-1} \widetilde{\mathcal{B}}_{K}$ with $\widetilde{\mathcal{C}}_{K}=\mathcal{C}_{K} \mathcal{T}_{2}, \widetilde{\mathcal{B}}_{K}=\mathcal{T}_{1} \mathcal{B}_{K}$.
- $G(s)=\mathcal{D}_{K}+\widetilde{\mathcal{C}}_{K}\left(I+\left(s-s_{0}\right) \widetilde{\mathcal{M}}_{K}\right)^{-1} \widetilde{\mathcal{R}}_{K}$ with

$$
\begin{aligned}
\widetilde{\mathcal{M}}_{K} & =\left(\widetilde{\mathcal{L}}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{T}_{1} \mathcal{E}_{K} \mathcal{J}_{2}, & \widetilde{\mathcal{R}}_{K} & =\left(\widetilde{\mathcal{L}}_{K}\left(s_{0}\right)\right)^{-1} \widetilde{\mathcal{B}}_{K} \\
& =\mathcal{T}_{2}^{-1} \mathcal{M}_{K} \mathcal{T}_{2}, & & =\mathcal{T}_{2}^{-1} \mathcal{R}_{K}
\end{aligned}
$$

- As before: Compute basis of $\mathcal{K}_{s}\left(\widetilde{\mathcal{M}}_{K}, \widetilde{\mathcal{R}}_{K}\right)$. Represent it in block form with blocks $W_{j} \in \mathbb{C}^{n \times r}, j=1, \ldots, \ell$. Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- Any linearization in \mathbb{G}_{r+1} can be expressed as

$$
\widetilde{\mathcal{L}}_{K}(\lambda)=\mathcal{T}_{1} \mathcal{L}_{K}(\lambda) \mathcal{T}_{2} \quad \text { with } \mathcal{T}_{1}=\left[\begin{array}{c|c}
I_{(r+1) n} & B_{1} \\
\hline 0 & C_{1}
\end{array}\right], \quad \mathcal{T}_{2}=\left[\begin{array}{c|c}
I_{(s+1) n} & 0 \\
\hline B_{2} & C_{2}
\end{array}\right]
$$

and $B_{1} \in \mathbb{R}^{(r+1) n \times s n}, B_{2} \in \mathbb{R}^{r n \times(s+1) n}, C_{1} \in \mathbb{R}^{s n \times s n}, C_{2} \in \mathbb{R}^{r n \times r n}$.

- $G(s)=\mathcal{D}_{K}+\widetilde{\mathfrak{C}}_{K}\left(\widetilde{\mathcal{L}}_{K}(s)\right)^{-1} \widetilde{\mathcal{B}}_{K}$ with $\widetilde{\mathcal{C}}_{K}=\mathcal{C}_{K} \mathcal{T}_{2}, \widetilde{\mathcal{B}}_{K}=\mathcal{T}_{1} \mathcal{B}_{K}$.
- $G(s)=\mathcal{D}_{K}+\widetilde{\mathcal{C}}_{K}\left(I+\left(s-s_{0}\right) \widetilde{\mathcal{M}}_{K}\right)^{-1} \widetilde{\mathcal{R}}_{K}$ with

$$
\begin{aligned}
\widetilde{\mathcal{M}}_{K} & =\left(\widetilde{\mathcal{L}}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{T}_{1} \varepsilon_{K} \mathcal{T}_{2}, & \widetilde{\mathcal{R}}_{K} & =\left(\widetilde{\mathcal{L}}_{K}\left(s_{0}\right)\right)^{-1} \widetilde{\mathcal{B}}_{K} \\
& =\mathcal{T}_{2}^{-1} \mathcal{M}_{K} \mathcal{T}_{2}, & & =\mathcal{T}_{2}^{-1} \mathcal{R}_{K}
\end{aligned}
$$

- Thus, $\mathcal{K}\left(\widetilde{\mathcal{M}}_{\kappa}, \widetilde{\mathcal{R}}_{k}\right)=\mathcal{T}_{2}^{-1} \mathcal{K}\left(\mathcal{M}_{\kappa}, \mathcal{R}_{k}\right)$.
- As before: Compute basis of $\mathcal{K}_{s}\left(\mathcal{M}_{K}, \mathcal{R}_{K}\right)$. Represent it in block form with blocks $W_{j} \in \mathbb{C}^{n \times r}, j=1, \ldots, \ell$. Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Block Kronecker Ansatz space \mathbb{G}_{r+1}

- Any linearization in \mathbb{G}_{r+1} can be expressed as

$$
\widetilde{\mathcal{L}}_{K}(\lambda)=\mathcal{T}_{1} \mathcal{L}_{K}(\lambda) \mathcal{T}_{2} \quad \text { with } \mathcal{T}_{1}=\left[\begin{array}{c|c}
I_{(r+1) n} & B_{1} \\
\hline 0 & C_{1}
\end{array}\right], \quad \mathcal{T}_{2}=\left[\begin{array}{c|c}
I_{(s+1) n} & 0 \\
\hline B_{2} & C_{2}
\end{array}\right]
$$

and $B_{1} \in \mathbb{R}^{(r+1) n \times s n}, B_{2} \in \mathbb{R}^{r n \times(s+1) n}, C_{1} \in \mathbb{R}^{s n \times s n}, C_{2} \in \mathbb{R}^{r n \times r n}$.

- $G(s)=\mathcal{D}_{K}+\widetilde{\mathfrak{C}}_{K}\left(\widetilde{\mathcal{L}}_{K}(s)\right)^{-1} \widetilde{\mathcal{B}}_{K}$ with $\widetilde{\mathcal{C}}_{K}=\mathcal{C}_{K} \mathcal{T}_{2}, \widetilde{\mathcal{B}}_{K}=\mathcal{T}_{1} \mathcal{B}_{K}$.
- $G(s)=\mathcal{D}_{K}+\widetilde{\mathcal{C}}_{K}\left(I+\left(s-s_{0}\right) \widetilde{\mathcal{M}}_{K}\right)^{-1} \widetilde{\mathcal{R}}_{K}$ with

$$
\begin{aligned}
\widetilde{\mathcal{M}}_{K} & =\left(\widetilde{\mathcal{L}}_{K}\left(s_{0}\right)\right)^{-1} \mathcal{T}_{1} \varepsilon_{K} \mathcal{T}_{2}, & \widetilde{\mathcal{R}}_{K} & =\left(\widetilde{\mathcal{L}}_{K}\left(s_{0}\right)\right)^{-1} \widetilde{\mathcal{B}}_{K} \\
& =\mathcal{T}_{2}^{-1} \mathcal{M}_{K} \mathcal{T}_{2}, & & =\mathcal{T}_{2}^{-1} \mathcal{R}_{K}
\end{aligned}
$$

- Thus, $\mathcal{K}\left(\widetilde{\mathcal{M}}_{K}, \widetilde{\mathcal{R}}_{k}\right)=\mathcal{T}_{2}^{-1} \mathcal{K}\left(\mathcal{M}_{K}, \mathcal{R}_{k}\right)$.
- As before: Compute basis of $\mathcal{K}_{s}\left(\widetilde{\mathcal{M}}_{K}, \widetilde{\mathcal{R}}_{K}\right)$. Represent it in block form with blocks $W_{j} \in \mathbb{C}^{n \times r}, j=1, \ldots, \ell$. Generate reduced order higher order system via projection with V, the matrix representing an orthonormal basis of $\operatorname{span}\left\{W_{r+1}\right\}$.

Four different Linearizations for Robot Example

Robot $P(\lambda) \in \Pi_{4}^{n}$

$$
\begin{gathered}
P_{4} \frac{d^{4}}{d t^{4}} x(t)+P_{3} \frac{d^{3}}{d t^{3}} x(t)+P_{2} \frac{d^{2}}{d t^{2}} x(t)+P_{1} \frac{d}{d t} x(t)+P_{0} x(t)=B u(t), \quad P_{i}=(-1)^{i} P_{i}^{T} \\
D u(t)+C_{3} \frac{d^{3}}{d t^{3}} x(t)+C_{2} \frac{d^{2}}{d t^{2}} x(t)+C_{1} \frac{d}{d t} x(t)+C_{0} x(t)=y(t)
\end{gathered}
$$


```
P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/5;
P4=.5*gallery('poisson',10);
P1=rand(100);P1=P1-P1';
P3=randn(100); P3=P3-P3';
```


Four different Linearizations for Robot Example

Four different Linearizations for Robot Example

Robot $P(\lambda) \in \Pi_{4}^{n}$

$$
\begin{gathered}
P_{4} \frac{d^{4}}{d t^{4}} x(t)+P_{3} \frac{d^{3}}{d t^{3}} x(t)+P_{2} \frac{d^{2}}{d t^{2}} x(t)+P_{1} \frac{d}{d t} x(t)+P_{0} x(t)=B u(t), \quad P_{i}=(-1)^{i} P_{i}^{T} \\
D u(t)+C_{3} \frac{d^{3}}{d t^{3}} x(t)+C_{2} \frac{d^{2}}{d t^{2}} x(t)+C_{1} \frac{d}{d t} x(t)+C_{0} x(t)=y(t)
\end{gathered}
$$


```
P0=1/100*gallery('poisson',10);
P2=randn(100);P2=(P2+P2')/30;
P4=eye(n);
P1=rand(100);P1=P1-P1';
P3=randn(100); P3=P3-P3';
```

H. Faßbender | MOR of Aligher Order Systems

Four different Linearizations for Robot Example

Eigenvalues of Robot Example

MOR for Robot Example, expansion points $\pm 0.5 \imath$

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?
Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- It is not (yet) clear how to choose an optimally conditioned linearization.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- It is not (yet) clear how to choose an optimally conditioned linearization.
- For the structured robot example, the structured linearizations seem to be better conditioned.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- It is not (yet) clear how to choose an optimally conditioned linearization.
- For the structured robot example, the structured linearizations seem to be better conditioned.
- LU decomposition of linearization needs to be computed efficiently.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- It is not (yet) clear how to choose an optimally conditioned linearization.
- For the structured robot example, the structured linearizations seem to be better conditioned.
- LU decomposition of linearization needs to be computed efficiently.
- For block-dense linearizations, the LU decomposition can be computed in about $\mathcal{O}\left(\ell^{3} n^{3}\right)$ flops.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- It is not (yet) clear how to choose an optimally conditioned linearization.
- For the structured robot example, the structured linearizations seem to be better conditioned.
- LU decomposition of linearization needs to be computed efficiently.
- For block-dense linearizations, the LU decomposition can be computed in about $\mathcal{O}\left(\ell^{3} n^{3}\right)$ flops.
- For the structured robot example, the LU decomposition of the structured block Kronecker linearization can be computed in just $\mathcal{O}\left(n^{3}+\ell^{2} n^{2}\right)$ flops.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Conclusions

- Galerkin projection based MOR for higher order LTI systems.
- Compute projection from linearization of higher order LTI system such that higher order system can be recovered.
- Vector spaces $\mathbb{L}_{1}(P)$ and $\mathbb{G}_{r+1}(P)$ allow to generate an abundance of linearizations.
- Linearizations have different condition.
- It is not (yet) clear how to choose an optimally conditioned linearization.
- For the structured robot example, the structured linearizations seem to be better conditioned.
- LU decomposition of linearization needs to be computed efficiently.
- For block-dense linearizations, the LU decomposition can be computed in about $\mathcal{O}\left(\ell^{3} n^{3}\right)$ flops.
- For the structured robot example, the LU decomposition of the structured block Kronecker linearization can be computed in just $\mathcal{O}\left(n^{3}+\ell^{2} n^{2}\right)$ flops.
- Open question: What are the dominant poles of a higher order system?

Thank you for your attention!

Main References

[FS-1]: H. Faßbender and P. Saltenberger, On vector spaces of linearizations for matrix polynomials in orthogonal bases. Linear Algebra and its Applications 525 (2017), pp. 59-83.
[FS-2]: H. Faßbender and P. Saltenberger, Block Kronecker Ansatz Spaces for Matrix Polynomials. Linear Algebra and its Applications 542 (2018), pp. 118-148.
[Freund BIT 2005]: R. Freund, Krylov subspaces associated with higher-order linear dynamical systems. BIT 45 (2005), pp. 495-526.
[4M]: D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann, Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971-1004.
[LBLW 2011]: B. Li, L. Bao, Y. Lin, Y. Wei, Model-order reduction of kth order MIMO dynamical systems using block kth order Krylov subspaces. International Journal of Computer Mathematics 88(1) (2011), pp. 150-162.

Some results from [FS-2] have been discovered independently in M. Bueno, F. Dopico, J. Pérez, R. Saavedra, B. Zykoski, A unified approach to Fiedler-like pencils via strong block minimal bases pencils. arXiv preprint, arXiv:1611.07170v1.

More References

Dopico, Lawrence, Pérez, Van Dooren, Block Kronecker linearizations of matrix polynomials and their backward errors. MIMS-eprint 2016.34.

Freund, Pade-type model reduction of second-order and higher-order linear dynamical systems. In Benner, Mehrmann, Sorensen, Dimensions reduction of large-scale systems, Springer 2005.

Lancaster, Psarrakos, A Note on Weak and Strong Linearizations of Regular Matrix Polynomials, Numerical Analysis Report No. 470, 2005.

Lin, Bao, Wei, Model-order reduction of large-scale kth order linear dynamical systems via a kth order Arnoldi method. International Journal of Computer Mathematics 87(2) (2010), pp.
435-453. Mackey, Mackey, Mehl, Mehrmann, Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIMAX 28 (2006).

Mehrmann, Schröder, Simoncini, An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems, LAA, 2009.

Mehrmann, Watkins, Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SISC 22 (2001).

[^0]: with $\hat{\mathcal{E}}=\mathcal{W}^{\top} \mathcal{E} \mathcal{W}, \hat{\mathcal{A}}=\mathcal{W}^{\top} \mathcal{A} \mathcal{W} \in \mathbb{C}^{r \times r}, \hat{\mathcal{B}}=\mathcal{W}^{\top} \mathcal{B} \in \mathbb{C}^{r \times m}, \hat{\mathrm{C}}=\mathcal{C} \mathcal{W} \in \mathbb{C}^{p \times r}$

 - It seems as if no lth order ODE can be extracted.

