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Approach 1 Linearizati Example Robot ~ Conclusions

Higher Order Linear Time-Invariant Systems

Higher Order Linear Time-Invariant Systems

Given matrices P, € R™", 0 <j < G e RP*" 0<j< BeR™™, DeRP*™and
an input function u : [0, c0) — R™, we seek the state function x : [0, c0) — R™ and the
output function y : [0, co) — RP such that

at af d
Pgwx(t) + Py Fx(t) Areecqr B ax(t) + Pox(t) = Bu(t)
g d
Du(t) + Cy_ Fx(t) +---+ G Ex(t) + Cox(t) = y(t)
with initial conditions
%xu) = V. 0<i<y,

where xé” € R", 0 < j < { are given vectors.
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Higher Order Linear Time-Invariant Systems

Higher Order Linear Time-Invariant Systems

Given matrices P, € R™", 0 <j < G e RP*" 0<j< BeR™™, DeRP*™and
an input function u : [0, c0) — R™, we seek the state function x : [0, c0) — R™ and the
output function y : [0, co) — RP such that

at af d
P@Wx(t) + Pef1 Fx(t] SFoceaF P1ax(t) + PoX(t) = BU(U
gt d
DU“) + Co_1 Fx(t) S oo C1EX(t) 4 CoX(t) = y(t)

with initial conditions
d ") ,
—x(t =x,, 0<j<Y{
ot (1) o 0 /

where x0 € R", 0 < j < { are given vectors.

Transfer Function
G(s)=D+3 7 Gi(Po+ Py +Po+- - +5'P)'B=D+Y =) C(P(s))'B.
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Approach 1 Linearizati Example Robot  Gonclusions

Higher Order Linear Time-Invariant Systems

Model Order Reduction for Higher Order Linear Time-Invariant Systems

Given matrices
PeR™O0Lj<EGER 0L j< BeR™™ DeRPX"
and an input function u : [0, co) — R™, we seek reduced order matrices
PeR™0<j<LCeER,0<j<,BeR™™ DecRP*m

with r < n such that

n dl . n —1 ~ d . . N
PgWX(I) + Py prom X(t)+---+ Py Ex(t) + PoX(t) = Bu(t)
N d€71 ~ d . . N
Dult) + G g X(0) £+ + G X(0) + GoX () = §(1)

with suitable initial conditions yields a transfer function G(s) such that

A

G(s) = G(s) + O((s—sp)") for some s, € C.
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Approach 1 Lil

i Example Robot ~ Conclusions
Higher Order Linear Time-Invariant Systems

Galerkin Projection of Higher Order Linear Time-Invariant Systems

Given matrices P; € R™", C; € RP*", B € R™™, D € RP*™, find a matrix V € R"™*"

with orthonormal columns with r < n and construct
P=VIPVeR™, B=V'BeR™",
Ci =GV eRP,

D=DeRrP*m,
such that

G(s) = G(s) + O((s— sp)") for some s, € C.
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Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.
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Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.

Outline
= lllustrative examples
= Approach 1: MOR for higher order system by Freund (2005)
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Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.

Outline

= lllustrative examples

= Approach 1: MOR for higher order system by Freund (2005)

= (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
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Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.

Outline

= lllustrative examples

= Approach 1: MOR for higher order system by Freund (2005)

= (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))
= New developments in linearization of matrix polynomials
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Approach 1 Linearizati Example Robot ~ Conclusions

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.

Outline

= |llustrative examples

= Approach 1: MOR for higher order system by Freund (2005)

= (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))

= New developments in linearization of matrix polynomials
= Generalization of companion form linearization L
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Standard approach: Linearization

Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.
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= |llustrative examples

= Approach 1: MOR for higher order system by Freund (2005)

= (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))

= New developments in linearization of matrix polynomials
= Generalization of companion form linearization L
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Approach 1 Linearizati Example Robot ~ Conclusions

Higher Order Linear Time-Invariant Systems

Standard approach: Linearization

Consider associated matrix polynomial P(A) = APy + APy 4 + - -+ APy + P, € TT7
and convert it into A€ + A € TT{" with the same eigenvalues.

Outline

= |llustrative examples

= Approach 1: MOR for higher order system by Freund (2005)

= (Approach 2: MOR for higher order system by Li, Bao, Lin, Wei (2011))

= New developments in linearization of matrix polynomials
= Generalization of companion form linearization L
= Block Kronecker linearizations G, 1

Higher order LTI systems and block Kronecker linearizations
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PA) =AM+AG+K, M=M',G=-G",K=K", M,G, KeR™"
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PA) =AM+AG+K, M=M',G=-G",K=K", M,G, KeR™"

Such problems arise, for example, in finite element discretization in structural analysis
and in the elastic deformation of anisotropic materials. They are used to model
vibrations of spinning structures such as the simulation of tire noise, helicopter rotor
blades, or spin-stabilized satellites with appended solar panels or antennas.
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PA) =AM+AG+K, M=M',G=-G",K=K", M,G, KeR™"

Such problems arise, for example, in finite element discretization in structural analysis
and in the elastic deformation of anisotropic materials. They are used to model
vibrations of spinning structures such as the simulation of tire noise, helicopter rotor
blades, or spin-stabilized satellites with appended solar panels or antennas.

P(}\) =}\4P4 +}\3P3+}\2P2+7\P1 + Py, P, = (—1]iPiT, P,eR™" i=0,...,4.
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Approach 1 Linearizati Example Robot ~ Conclusions

lllustrative examples

Gyroscopic system P(A) € TI
PA) =XM+AG+K, M=M,G=-G",K=K', M, G KecR™.

Such problems arise, for example, in finite element discretization in structural analysis
and in the elastic deformation of anisotropic materials. They are used to model
vibrations of spinning structures such as the simulation of tire noise, helicopter rotor
blades, or spin-stabilized satellites with appended solar panels or antennas.

Robot P(A) € TT}
P(A) = APy + NP3+ N2P, + AP, + Py,  P,=(—1)P], P,eR™" i=0,...,4.

Such problems arise, e.g, from the model of a robot with electric motors in the joints.
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Approach 1 Linearizati Example Robot ~ Conclusions

lllustrative examples

Gyroscopic system P(A) € TI
P(A) =AM +AG + K, M=MT,G=-G", K=K, M,G,KecR™.

Such problems arise, for example, in finite element discretization in structural analysis
and in the elastic deformation of anisotropic materials. They are used to model
vibrations of spinning structures such as the simulation of tire noise, helicopter rotor
blades, or spin-stabilized satellites with appended solar panels or antennas.

Robot P(A) € TT}
P(A) = A*Py + N3P3 + N2P, + APy + Py, P, =(—1)P], P eR™i=0,...,4
Such problems arise, e.g, from the model of a robot with electric motors in the joints.

T-even matrix polynomials
For both examples: P(A) = P(—A)T.
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df e—1 d
Pgwx(t) A P¢_1 FX(Z‘) SFocoaF P1 Ex(t) B P()X(t) = BU(t)
gt d
DU(t) I C¢,1 WX“) G ocoae C1 EX“) 4 CoX(t) = y(t)
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d d
Pgwx(t) A Pe_1 FX“) SFocoaF P1 Ex(t) B P()X(t) = BU(t)
gt d
DU(t) I C¢,1 WX“) G ocoae C1 EX“) 4 CoX(t) = y(t)
Let
—, 0
x(1) 0 ’
d —
aX(l‘) : 0 0 In
z(t) = . ’ 3/" =11 -AF = :
: 0
gt 0 -~ 0
T Xx(t B
a1 P, P P
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Approach 1 Li

Approach 1

Approach 1: Linearization via the first companion form
The higher order system is equivalent to the first order system

EFEZ“) +AFZ(t) = BFU(t)

at
y(t) = Dru(t) + Crz(t)
z(0) =z
where
0 —J
;( ) xéo] 0 "
gx() i . 0 o
z(t) = . zy = | .Br= (1) JAE =
d“*‘. _ 0
4= x(t) K= B .
o
& = {” n PJ, Cr=I[Co C -~ Ceyl, De=D

Example Robot ~ Conclusions

[Freund 2005]

0 0
—1I,

o 0
0 0 —In
P2 Py
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The higher order system is equivalent to the first order system

£r 2210 + Arz(t) = Bru(t)
y(t) = Deu(t) + Crz(t
z(0) = zg
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The higher order system is equivalent to the first order system

£r 2210 + Arz(t) = Bru(t)
y(t) = Deu(t) + Crz(t
z(0) = zg

= Transfer function
G(s) = D + Cr(s€r +Ar) "Br = D+ Y g G(P(s))'B € Clsl™™.
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The higher order system is equivalent to the first order system

er 2200 + Arz(t) = Bru(t)

dt (
y(t) = Dru(t) + Cr2(1)
z(0) = zg

= Transfer function
G(s) = D + Cr(s€r +Ar) "Br = D+ Y g G(P(s))'B € Clsl™™.

» Ef, Ap € R0 B ¢ RU7 are large and (block-) sparse.
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The higher order system is equivalent to the first order system

er 2200 + Arz(t) = Bru(t)

dt (
y(t) = Dru(t) + Cr2(1)
z(0) = zg

» Transfer function
G(s) = D + Cr(sér + Af)"Br = D+ Y [ G(P(s))"'B € ClslP*™.
» Ef, Ap € R0 B ¢ RU7 are large and (block-) sparse.

» A& + Afr does not inherit any structure from P(A),
that is, e.g., P(A) = P(A\)7 does not imply that (AEr + Ar)T = A& + Ar.
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» Rewrite G(s) = Dr + Cr(s€r + Ar)"Br for s € C such that s,&¢ + Ar is
nonsingular as

G(s) = D+ Cr(l+ (s—s0)MF) ' Re
with
Me = (So€F + Ap) '€ € T, Re = (s0€F + AF)'Bp € CI,
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» Rewrite G(s) = Dr + Cr(s€r + Ar)"Br for s € C such that s,&¢ + Ar is
nonsingular as

G(s) = D+ Cr(l+ (s—s0)MF) ' Re

with
Me = (So€F + Ap) '€ € T, Re = (s0€F + AF)'Bp € CI,
= Compute orthonormal basis of Ks(Mr, Re) = span{Re, MRk, .. ., Mi‘%,:}.
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» Rewrite G(s) = Dr + Cr(s€r + Ar)"Br for s € C such that s,&¢ + Ar is
nonsingular as

G(s) = D+ Cr(l+ (s—s0)MF) ' Re

with
Me = (So€F + Ap) '€ € T, Re = (s0€F + AF)'Bp € CI,

= Compute orthonormal basis of Ks(Mr, Re) = span{Re, MRk, .. ., M§‘1RF}.
= Let W be the matrix representing the basis.
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Rewrite G(s) = Dr + Cr(sEr + Ar)"Bg for sy € C such that soE¢ + Ar is
nonsingular as

G(s) = D+ Cr(l+ (s—s0)MF) ' Re

with
Me = (so€r + Ap) '€ € C7, Re = (s0€F + AF)'Bp € CI,

Compute orthonormal basis of Ks(Mg, Re) = span{Re, MeRe, ..., ME ' Re}
Let W be the matrix representing the basis.
Generate reduced order system

édﬁ (t) + A2(t) = Bu(p
P(t) = Du(t) + C2(t)
with & = WTEW, A = WTAW € C<", B = WTB € C™*m, & = CW € CP*".
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Rewrite G(s) = Dr + Cr(sEr + Ar)"Bg for sy € C such that soE¢ + Ar is
nonsingular as

G(s) = D+ Cr(l+ (s—s0)MF) ' Re

with
Me = (so€r + Ap) '€ € C7, Re = (s0€F + AF)'Bp € CI,

Compute orthonormal basis of Ks(Mg, Re) = span{Re, MeRe, ..., ME ' Re}
Let W be the matrix representing the basis.
Generate reduced order system

édﬁ (t) + A2(t) = Bu(p
P(t) = Du(t) + C2(t)
with & = WTEW, A = WTAW € C<", B = WTB € C™*m, & = CW € CP*".

It seems as if no {th order ODE can be extracted.
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The matrices Mg and Rg have a particular structure
Me = (so€r+Ap) "€r=(c@ lp) [MD ME MO ... MO]+5® I,
Re = (o€ +Ar) "BF=c®R,

where i
MY = (P(s9)) ") shPij € C™Mi=1,... 0
j=0
R=(P(sp)) 'BecC™m,
1 0 0 0
So 1 0 .
c— | L I=|g ] 0 - c Ctxt.
se'—1 : .
0 si2 s 1 0
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LetMp = (c® ) MO ME  mME ... MOU]+5®l, andRr =c® R with
ceClc#0,j=1,....6, ReC™m MO e C™nj=1,...,0 L e C™ Let
W € C**" be any basis of the block-Krylov subspace Ks(Mg, R), r < sm. Then W
can be represented in the form

wu)

WUB | where W € C™ and, for eachi = 1,2,... .,

: UY) e C"™*" is nonsingular and upper triangular.
wut)
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Approach 1 Linearizati Example Robot  Gonclusions

Approach 1 [Freund 2005]

Theorem (Freund 2005)

LetMp = (c® ) [MY MB MO ... MO] 451, andRr = ¢ ® R with
ceClc#0,j=1,....L, ReC™" MD e C™" i=1,...,L <€ C> Let
W € C'"*" be any basis of the block-Krylov subspace Ks(Mg, Re), r < sm. Then' W
can be represented in the form

wu)

WUB | where W € C"™" and, for eachi = 1,2,...,¢,

: U € C™ is nonsingular and upper triangular.
wut)

» K(Mg, Re) € C' consists of € 'copies’ of the subspace S, = span{W} c C".
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Approach 1 [Freund 2005]

Theorem (Freund 2005)

LetMp = (c® ) [MY MB MO ... MO] 451, andRr = ¢ ® R with
ceClc#0,j=1,....L, ReC™" MD e C™" i=1,...,L <€ C> Let
W € C'"*" be any basis of the block-Krylov subspace Ks(Mg, Re), r < sm. Then' W
can be represented in the form

wu)

WUB | where W € C"™" and, for eachi = 1,2,...,¢,

: U € C™ is nonsingular and upper triangular.
wut)

» K (Mp, Re) € C'" consists of £ 'copies’ of the subspace S, = span{W} c C".
= Let V be the matrix representing an orthonormal basis of span{ W}.
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Approach 1 [Freund 2005]

Theorem (Freund 2005)

LetMp = (c® ) [MY MB MO ... MO] 451, andRr = ¢ ® R with
ceClc#0,j=1,....L, ReC™" MD e C™" i=1,...,L <€ C> Let
W € C'"*" be any basis of the block-Krylov subspace Ks(Mg, Re), r < sm. Then' W
can be represented in the form

wu)

WUB | where W € C"™" and, for eachi = 1,2,...,¢,

: U € C™ is nonsingular and upper triangular.
wut)

» K (Mp, Re) € C'" consists of £ 'copies’ of the subspace S, = span{W} c C".
= Let V be the matrix representing an orthonormal basis of span{ W}.
= Choose

V=diag(V,V,..., V) e C"™ viy =,
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Approach 1 Linearizati Example Robot  Gonclusions

Approach 1 [Freund 2005]

Theorem (Freund 2005)

LetMp = (c® ) [MY MB MO ... MO] 451, andRr = ¢ ® R with
ceClc#0,j=1,....L, ReC™" MD e C™" i=1,...,L <€ C> Let
W € C'"*" be any basis of the block-Krylov subspace Ks(Mg, Re), r < sm. Then' W
can be represented in the form

wu)

WUB | where W € C"™" and, for eachi = 1,2,...,¢,

: U € C™ is nonsingular and upper triangular.
wut)

» K(Mg, Re) € C' consists of € 'copies’ of the subspace S, = span{W} c C".
= Let V be the matrix representing an orthonormal basis of span{ W}.
= Choose
V=diag(V,V,..., V) e C"™ viy =,
s Then Ks(Mg, Re) C range V.
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= Project the first order system using V

(VHEEV) v”dﬂtz(t) + (VIAEV) VHz(t) = (VPBE) u(t)
y(t) = Deu(t) + (C£V) Vz(t)

with

0 —Ip 0 0
0
. 0 0 —1I, - :

VAR, = : VRAEY = - . . . ,
0 : - - - 0
VHB 0 cee 0 0 —I,
VP, VH  vPVH VPV o VPV

VIRV = [I(eq)n VHPgV]' CEV=I[CV CV --- C1V], Dp=D.
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= Project the first order system using V

(VHEEV) v”dﬂtz(t) + (VIAEV) VHz(t) = (VPBE) u(t)
y(t) = Deu(t) + (C£V) Vz(t)

with

0 —1In 0 0
0
. 0 0 —1I, - :

VABe = | | VHAV = . . . ) ,
0 : - - - 0
VHB 0 cee 0 0 —I,
VP, VH  vPVH VPV o VPV

VIRV = [I(eq)n VHPeV]' CEV=I[CV CV --- C1V], Dp=D.

= An {th order reduced order system can be read off immediately.
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= Project the first order system using V

(VHEEV) v”dﬂtz(t) + (VIAEV) VHz(t) = (VPBE) u(t)
y(t) = Deu(t) + (C£V) Vz(t)

with

0 —Ip 0 0
0
. 0 0 —1I, - :

VABe = | | VHAV = . . . ) ,
0 : - - . 0
VHB 0 cee 0 0 —I,
VP, VH  vPVH VPV o VPV

VIRV = [I(eq)n VHPeV]' CEV=I[CV CV --- C1V], Dp=D.

= An {th order reduced order system can be read off immediately.
= The first moments of the reduced order system match those of the original system.
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= Approach 1 and 2 use companion form linearization.
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= Approach 1 and 2 use companion form linearization.

» Approach 1 uses block-Krylov subspace Ks(Mg, Re) with Mg = (so€r + Ag)'EF
and Rg = (308;: +.AF)_1:BF.
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= Approach 1 and 2 use companion form linearization.

» Approach 1 uses block-Krylov subspace Ks(Mg, Re) with Mg = (so€r + Ag)'EF
and Rg = (Sos;: +.AF)_1:BF.

= Approach 2 uses block-Krylov subspace Ks(Mg, Rg) with Mg = A" € and
Rp = Ag'Bs.
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= Approach 1 and 2 use companion form linearization.

» Approach 1 uses block-Krylov subspace Ks(Mg, Re) with Mg = (so€r + Ag)'EF
and Rg = (SOEF +.AF)_1:BF.

= Approach 2 uses block-Krylov subspace Ks(Mg, Rg) with Mg = A" € and
Rp = Ag'Bs.

= Neither A + Afr nor A€ + Ag is structure-preserving, e.g.,
(_}\SF +.AF)T 75 A(‘if: +AF and (—7\85 + .AB)T 75 }\83 +-AB
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Approach 1 and 2 use companion form linearization.

Approach 1 uses block-Krylov subspace Ks(Mg, Re) with Mg = (so€r + Ar) ' EF
and Rg = (SOEF +.AF)_1:BF.

Approach 2 uses block-Krylov subspace Ks(Mg, Rg) with Mg = Az '€ and
Rp = Ag'Bs.

Neither A 4+ Afg nor A€ + Ag is structure-preserving, e.g.,
(_}\SF +.AF)T 75 A(‘if: +AF and (—7\85 + .AB)T 75 7\83 +-AB

There are numerous other linearizations.
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Systematic way to construct linearizations that allow for the preservation of structure
and/or are better conditioned than the companion forms.
[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]
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Systematic way to construct linearizations that allow for the preservation of structure
and/or are better conditioned than the companion forms.
[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]

¢
P\x =) NPx
i=0
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Systematic way to construct linearizations that allow for the preservation of structure
and/or are better conditioned than the companion forms.

[Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006] = [4M]

14
P\x =) NPx
i=0

= linearization of size {n x {n

ATx
Py ‘ 0 0 s 0 Py_4 Py o --- P4 ‘ Py 2 PU\)X
0L, 0 - 0 L, 0 - 0 ]o ATEX 0
0 0 In oo 0 + 0 —In 0 0 : =
: : 5 Ax
oo 0o I 0 0 —Ih| o X 0
L1(A)

Technische
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Thus

A-Tx
A2y
L1(A) : =
AXx
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Thus

A-Tx
}\Z—ZX PO\)X
0
L4(A) : = :
AXx 0
X
as
)\271)( )\871
A2—2X )\8—2
: = : @ | x=(A)x and
AX A
X 1
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Thus

Nl e
£1(N) 5 - 0 = LiN)-(Ae®@h)x=e @ PA)x
v
as
vy . PR
: - : @1, | x=(A®h)x and : = e1®P(A)x.
SRR o
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Generalize £1(A) - (A¢ @ ) = e; @ P(A) to
LA) - (Ac®@ ) =va P(A) for L(A) =AE+A.
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Generalize £1(A) - (A¢ @ ) = e; @ P(A) to
LA) - (Ac®@ ) =va P(A) for L(A) =AE+A.

L(P) ={L(A) = A&+ A | &, A € R L) - (A¢® Iy) = v® P(A)
for some ansatz vector v € R*}.
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Generalize £1(A) - (A¢ @ ) = e; @ P(A) to
LA) - (Ac®@ ) =va P(A) for L(A) =AE+A.

L(P) ={L(A) = A&+ A | &, A € R L) - (A¢® Iy) = v® P(A)
for some ansatz vector v € R*}.

» L, (P) is a vector space over R with dimLL;(P) = £({ — 1)n? + L.
= Almost all pencils in IL; (P) are strong linearizations of P(A).

» L(A) =[v® [, WIL;(A) for v # 0 and an arbitrary W € R* (=17 is g strong
linearization of P(A), if [v® [, W] is nonsingular.
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Generalize £1(A) - (A¢ @ ) = e; @ P(A) to
LA) - (Ac®@ ) =va P(A) for L(A) =AE+A.

L(P) ={L(A) = A&+ A | &, A € R L) - (A¢® Iy) = v® P(A)
for some ansatz vector v € R*}.

» L, (P) is a vector space over R with dimLL;(P) = £({ — 1)n? + L.
= Almost all pencils in IL; (P) are strong linearizations of P(A).

» L(A) =[v® [, WIL;(A) for v # 0 and an arbitrary W € R* (=17 is g strong
linearization of P(A), if [v® [, W] is nonsingular.
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Approach 1 Li Example Robot  Conclusions
Vector space L (P)  Vector space Gy

Vector space L, (P) of linearizations

Generalize L1(A) - (A¢ ® I,) = e; @ P(A) to
LA)-(Ae®@ ) =ve P(A) for L(A) =AE + A.

Definition [Ansatz space] [4M]
Li(P)={LAA) =AE+A|E AR LA)- (Ae® ) =v® P
for some ansatz vector v € R%}.
Theorem [4M],[FS-1]
» L, (P) is a vector space over R with dimLL;(P) = £({ — 1)n? + L.
= Almost all pencils in IL; (P) are strong linearizations of P(A).

» L(A) =[v® [, WIL;(A) for v # 0 and an arbitrary W € R*(=1)7 s g strong
linearization of P(A), if [v® I, W] is nonsingular.
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Approach 1 Li Example Robot  Conclusions
Vector space L (P)  Vector space Gy

Vector space L, (P) of linearizations

Generalize L1(A) - (A¢ ® I,) = e; @ P(A) to
LA)-(Ae®@ ) =ve P(A) for L(A) =AE + A.

Definition [Ansatz space] [4M]
Li(P)={LAA) =AE+A|E AR LA)- (Ae® ) =v® P
for some ansatz vector v € R%}.
Theorem [4M],[FS-1]
» L, (P) is a vector space over R with dimLL;(P) = £({ — 1)n? + L.
= Almost all pencils in IL; (P) are strong linearizations of P(A).

» L(A) =[v® [, WIL;(A) for v # 0 and an arbitrary W € R*(=1)7 s g strong
linearization of P(A), if [v® I, W] is nonsingular.

= Similar derivation for second companion form £,(A) gives Ly (P).
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Approach 1 Li Example Robot  Conclusions
Vector space L (P)  Vector space Gy

Vector space L, (P) of linearizations

Generalize L1(A) - (A¢ ® I,) = e; @ P(A) to
LA)-(Ae®@ ) =ve P(A) for L(A) =AE + A.

Definition [Ansatz space] [4M]
Li(P)={LAA) =AE+A|E AR LA)- (Ae® ) =v® P
for some ansatz vector v € R%}.
Theorem [4M],[FS-1]
» L, (P) is a vector space over R with dimLL;(P) = £({ — 1)n? + L.
= Almost all pencils in IL; (P) are strong linearizations of P(A).

» L(A) =[v® [, WIL;(A) for v # 0 and an arbitrary W € R*(=1)7 s g strong
linearization of P(A), if [v® I, W] is nonsingular.

= Similar derivation for second companion form £,(A) gives Ly (P).
= There do exist linearizations that are not in IL; (P) or Ly (P).
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A pencil £(A) = A€ + A with €, A € R™¥k1 is called a linearization of P(A) € TT7 if
there exist unimodular matrix polynomials E(A), F(A) such that

E(A)L(A)F(A):[P N }

0 lk—1)n

for some k € N. A matrix polynomial £(A) is unimodular if det E(A) is a nonzero constant.
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Approach 1 Li Example Robot  Conclusions
Vector space Ly (P)  Vector space Gr.i1

Matrix Polynomials — (Strong) Linearization

Definition (Linearization)

A pencil £(A) = A€ + A with €, A € R¥"*k" is called a linearization of P(A) € TT7 if
there exist unimodular matrix polynomials E(A), F(A) such that

o ]

EMNLANF(A) = 0 ltk=1)n

for some kK € N. A matrix polynomial £(A) is unimodular if det E(A) is a nonzero constant.

Theorem [Lancaster, Psarrakos Report 2005]
For regular polynomials P(A) :

= any linearization: the Jordan structure of all finite eigenvalues is preserved.

= strong linearization: the Jordan structure of the eigenvalue oo is preserved.
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Approach 1 | Example Robot ~ Conclusions
Vector space L (P)  Vector space Gy

Matrix Polynomials — (Strong) Linearization

Definition (Linearization)

A pencil £L(A) = A& + A with €, A € Rk s called a linearization of P(A) € TI7 if
there exist unimodular matrix polynomials E(A), F(A) such that

Sarsn

EO\)L()\)F(}\) = 0 /(k71)n

for some kK € N. A matrix polynomial £(A) is unimodular if det E(A) is a nonzero constant.

Theorem [Lancaster, Psarrakos Report 2005]
For regular polynomials P(A) :

= any linearization: the Jordan structure of all finite eigenvalues is preserved.

= strong linearization: the Jordan structure of the eigenvalue oo is preserved.

Example

4 5 1 2 1 3

.,
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= Freund considers

EF%Z“) +.AFZ(t) = BFU(t)

y(t) = Dru(t) + Crz(1).
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= Freund considers

EF%Z“) +.AFZ(t) = BFU(t)

y(t) = Dru(t) + Crz(1).

= Interpret Freund’s approach in terms of the first companion form £1(A) = A&y + A4

&4 230+ AZ() = Byu(1
y(t) = Dru(t) + Cyz(t).
with
Z(t) =PTz(1)
B, =P"B
Ci = CgP

In
as £1(A) = A&y + Ay = APTELP + PTALP with P = { w .
In

echnische
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= Approach is based on the Krylov subspace induced by M = (£1(s,))~ '€ and
R = (L1(s0)) " By.
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= Approach is based on the Krylov subspace induced by M = (£1(s,))~ '€ and
R = (L1(s0)) " By.

= All linearizations in IL; can be written as
L) =@, WILi(A) = TLy(A) = ATE; + TA,
with v € RY, W € R (=11 gych that T = [v ® [, W] is nonsingular.
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Approach is based on the Krylov subspace induced by M = (£(sp)) "€ and
R =(£L1(50)) 7" Bs.

All linearizations in Ly can be written as

L) =@, WILi(A) = TLy(A) = ATE, + TA,
with v € RY, W € R (=11 gych that T = [v ® [, W] is nonsingular.
= As

(7&1) S2(0)+ (TA,) 2(0) = (7B, u()
and

(£(%0)) 71 (TE) = (L4(s0)) &1 =M,

(£(80))7"(TB4) = (£L1(80)) "By =R,

all linearization in ILy will yield (theoretically) the same reduced order system.
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Approach is based on the Krylov subspace induced by M = (£(sp)) "€ and
R =(£L1(50)) 7" Bs.

All linearizations in Ly can be written as

L) =@, WILi(A) = TLy(A) = ATE, + TA,
with v € RY, W € R (=11 gych that T = [v ® [, W] is nonsingular.
= As

(7&1) S2(0)+ (TA,) 2(0) = (7B, u()
and

(£(%0)) 71 (TE) = (L4(s0)) &1 =M,

(£(80))7"(TB4) = (£L1(80)) "By =R,

all linearization in ILy will yield (theoretically) the same reduced order system.

A similar observation holds for Approach 2.
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P(A) = A°M+AG+ K, M=M",G=-G",K=K', M,G,KeR™".

Technische
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P(A) = A°M+AG+ K, M=M",G=-G",K=K', M,G,KeR™".

L1(?\)=[Ig’ ?]+[f, ’g]

is not structure preserving as £1(A) # £1(—A)7.
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Approach 1 Li Example Robot  Conclusions
Vector space L (P)  Vector space Gy

Vector space L, (P) — Structured Linearizations

Gyroscopic system P(A) = P(—A)T € 13
PA) =NM+AG+K, M=M,G=-G",K=K', M,G KeR™.

Companion form in Ly (P)

L‘U‘):H/’ ”+[—G/ /g}

is not structure preserving as £1(A) # £1(—A)".

Structured linearization in L (P)

LO\J:)\[AO/I _g%{/\g E}EL(P)

is a structure-preserving linearization (£(A) = £(—A)7).
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P(A) = NPy + APy + NP, + APy + Py, Pi=(—1)'P], P €R™"i=0,... 4.
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P(A) = N*Py + APy + A2P, + AP; + Py,

P = (=1)'PT,

Pie R™"i=0,..., 4.

Py 0 O Ps

N I
LiM=A1g o 4, oflT|o
0o 0 0 I 0

Technische

P>

P Py

0 0

0 0
—Ih 0
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Approach 1 Li Example Robot  Conclusions

Vector space Ly (P)  Vector space G (1

Vector space L, (P) — Structured Linearizations

Robot P(A) = P(—A)T € T}
P(A) = NPy + APy + NP, + APy + Py, P,

Companion form in L (P)

P, 0 0 O Ps P,
o 15 o o —Ip 0
Li(A)=A 0 0 4 0 +1 o I,
0 0 0 I 0 0
Structured linearizations in L1 (P)
0 —Py 0 —Py
Py Ps P4 Ps
LN =Alo —p P—Py P—P| T
Py Ps Py—P P

=(-1)P], Pi€eR™"i=0,...,4
Py Py
0 0
0 0
—, 0
different [4M]
Py 0 Py 0
0 P> — Py Py —P3 Py
Py P3—Pi P>—Py 0
0 PO 0 Po

Technische
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spectral condition number

P, () with n=100

108

10%

—_0
= = struc. L()\)

Technische

Universitat
Braunschweig

102 10°
A

10%

10*

P0=1/100*gallery(’poisson’,10);
P2=randn (100) ;P2=(P2+P2°)/30;
P4=eye(n);
P1=rand(100);P1=P1-P1’;
P3=randn(100) ;P3=P3-P3’;
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spectral condition number

P, () with n=100

108

10%

—_0
= = struc. L()\)

Technische

Universitat
Braunschweig

102 10°
A

10%

10*

L1(A) and L(A) may be very
differently conditioned.

P0=1/100*gallery(’poisson’,10);
P2=randn (100) ;P2=(P2+P2°)/30;
P4=eye(n);
P1=rand(100);P1=P1-P1’;
P3=randn(100) ;P3=P3-P3’;
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spectral condition number

P, () with n=100

10° i
— LW L1(A) and L(A) may be very
= = struc. L(\) differently conditioned.
10°F 1
104 F E
P0=1/100*gallery(’poisson’,10);
10k | P2=randn(100) ;P2=(P2+P2°)/5;
P4=.5%gallery(’poisson’,10);
Pl=rand(100);P1=P1-P1’;
102 F 1 P3=randn(100) ;P3=P3-P3’;
10" F E
10° L n L
10 102 10° 10? 10*
A
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spectral condition number

108

10%

P, () with n=100

—_0
= = struc. L()\)

102 10°
A

10%

10*

L1(A) and £(A) may be very
differently conditioned.

L(A) is not (block) sparse,
while £1(A) is.

P0=1/100*gallery(’poisson’,10);
P2=randn(100) ;P2=(P2+P2°)/5;
P4=.5%gallery(’poisson’,10);
P1=rand(100);P1=P1-P1’;
P3=randn(100) ;P3=P3-P3’;
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P(A) = NPy +AP3 + NP + AP + Py, Pi=(-1)P], P eR™,i=0,...,4
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P(A) = A*Py + NP3 +A2Py + APy + Py,

P =(—1)

iP-T,

I

P, eR™",i=0,...,4.

0 —P—APs 0 |A |
LA =10 0 Po+AP | 0 A
. o [0 o
0 / —Al ‘ 0 O

I' | =AE&+A Note+&, A € R
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P(A) = NPy + NPy + NP, + APy + Py, P=(—1)iPT, P, €R™",i=0,...,4.

Py 0 0 I 0
0 —P,—AP; 0 A
LA)=| 0 0 Po+AP; | 0 Al | =A&+A Note+&, A € R¥™51

I —Al 0 0 O

0 I —Al 0 0

as
V(AMLAU(A) = diag(lsn, P(A))

0 0 Py —APy 0 0 I Al A2y

In 0 APy A2P4 4+ AP3 +Pp l lo [ In Aln

0 0 In 0 LJUA) =[]0 0 0 0 In

0 0 0 In h 0 0 0 —A2p,

Al —A%Py —A3Py — %P3 — APy 0 Ih 0 0 A3P, +A2P3 + AP,

det U(A) =det V(A) = 1.
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Let P(A) € TI7 with £ = r + s+ 1. The block Kronecker ansatz space G, 1(P) is the
set of all £n x £n matrix pencils L(A) that satisfy the block Kronecker ansatz equation

L(A) 7\s/,,

[[A'In"' In] | ][511 | £12(A) ] _[OCP(A) 0]
|Isn L1 (A | Laa(A) I, - 0 0 |-
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Let P(A) € TI7 with £ = r + s+ 1. The block Kronecker ansatz space G, 1(P) is the
set of all £n x £n matrix pencils L(A) that satisfy the block Kronecker ansatz equation

L,[Z\) ST,
[ [Ahy o o] | ] [ L1(A) | £12(A) ] _ xP(A) | O
| Isn L1 (A | 22(A) I, 0 0 |-

» G,,1(P) is a vector space over R of dimension (£ — 1)¢n? + 1. [FS-2]
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Let P(A) € TI7 with £ = r + s+ 1. The block Kronecker ansatz space G, 1(P) is the
set of all £n x £n matrix pencils L(A) that satisfy the block Kronecker ansatz equation

L,[Z\) ST,
[ [Ahy o o] | ] [ L1(A) | £12(A) ] _ xP(A) | O
| Isn L1 (A | 22(A) I, 0 0 |-

» G,,1(P) is a vector space over R of dimension (£ — 1)¢n? + 1. [FS-2]

= Thus, L{(P) # G,.+(P).
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Approach 1 Lineari Example Robot ~ Conclusions
Vector space Ly (P)  Vector space G 11

Block Kronecker Ansatz space G, 1

Definition [Block Kronecker Ansatz space] [FS-2]

Let P(A) € TI7 with £ = r + s+ 1. The block Kronecker ansatz space G..1(P) is the
set of all £n x £n matrix pencils IL(A) that satisfy the block Kronecker ansatz equation

L)
(ANl ee 0] | ] [ L1(A) | £12(A) _ { aP(A) | 0 }
| fen La1(N) | L22(A) 0 0
» G,.1(P) is a vector space over R of dimension ({ — 1){n® + 1. [FS-2]
» Thus, L{(P) # G,1(P).
= Almost all pencils in G, 1(P) are strong linearizations of P(A). [FS-2]
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a* a® a? d
P4WX(t) = Pawx(t) = Pgﬁx(t) = P1 EX(I') -+ PoX(t) = Bu(t)
a® a? d
Du(t) + Caﬁx(t) + Czﬁx(t) + C; Ex(t) + Cox(t) = y(1)

echnische
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Pty P L)+ P Lox(t) + Py Ex(t) 1 Pox(t) = Bult)
ot Sar 2 ar " at 0
Du(t) + G Lo x(t) + 6 Lox(t) + 0 Zx(t) + Cox(t) = y(1
ars dar dt 0
The linearization
Py 0 0 ! 0
0 —P,—AP; 0 A
LN =AE+A=]| O 0 Pyt AP | O A
/ —Al 0 0 0
0 | —Al 0 0

does not give an equivalent first order ODE of the form Ed%z(t) + Az(t) = Bu(t)
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Approach 1 Li Example Robot ~ Conclusions
Vector space Ly (P)  Vector space G 11

Higher order system and block Kronecker linearizations
Robot P(A) € TT}

d4 d3 2

Pa S x(1) 4 Py S x(t) + Py Seox(t) + Py S x(0) + Pox(t) = Bu(t
DU(t) + CgiSX(t) + ng—zx(t) + C1 gX(l‘) + C()X(t) = y(t)
dr dr? at
The linearization
P, 0 0 I 0]
0 —P,—AP; 0 Al
LA)=AE+A= 0 0 Po+AP;y | O Al
/ —Al 0 0 O
0 I —Al ‘ 0 0 |

does not give an equivalent first order ODE of the form E%Z(f) + Az(t) = Bu(t)

Py 0 0 o [A21n
0 —Pp—APg 0 A An

n o o 0 0 Po+APL | 0 Al n | = P(\)
7 —Al 0 00 0
0 1 —AI o 0 0
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In L; all linearizations are based on £4(A), the linearizations in G, 4 are based on

Lx(AN) =Nk + Ax

[ APy + Py oPyo - oP, —Ip T
Pt Al
: -
— OCPo }\In
-1, Al
. 0
L —In Alp ]
PR OSIELLN
_LS(?\) 0
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= We can find By, (BK such that

D+ZC 1B =Dk + Ck (Lk(s) By

Technische
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= We can find By, (BK such that

D+ZC 1B =Dk + Ck (Lk(s) By

= Introduce shift s, € C such that £x(sy) = So€k + Ak is nonsingular. Then
G(s) = D + Cx(Lk(8)) "Bk = Dk + Cx (I + (s — 50)Mk) "Rg

with
My = (Lk(s0)) "Ex, R = (Lk(S0)) " Bk

H. FaBbender | MOR of Higher Order Systems

Braunschweig



= We can find By, (BK such that

D+ZC 1B =Dk + Ck (Lk(s) By

= Introduce shift s, € C such that £x(sy) = So€k + Ak is nonsingular. Then
G(s) = D + Cx(Lk(8)) "Bk = Dk + Cx (I + (s — 50)Mk) "Rg
with
My = (Lx(s0)) "€k, Rk = (Lk(s0)) " Bk.

= Compute basis of Ks(Mg, Rk). Represent the basis in block form

Wy
|:W2:| i VV/ e Cmr,

W
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= We can find By, (BK such that

D+ZC 1B =Dk + Ck (Lk(s) By

= Introduce shift s, € C such that £x(sy) = So€k + Ak is nonsingular. Then
G(s) = D + Cx(Lk(8)) "Bk = Dk + Cx (I + (s — 50)Mk) 'Ry
with
My = (Lx(s0)) "€k, Rk = (Lk(s0)) " Bk.

= Compute basis of Ks(Mg, Rk). Represent the basis in block form
Wi
|:W2:| i VV/ c Cnxr,
we

= Generate reduced order higher order system via projection with V, the matrix
representing an orthonormal basis of span{W, }.
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= Any linearization in G,, ; can be expressed as

Lxk(N) = T1Lx(AN)T,  with Ty = { I“B”" g: ] T, = { '[Sg;)" gz ]

and B1 c R(r+1]n><sn 52 c anx(s+1]n C1 c Rsnxsn 02 c Rrnxrn.
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= Any linearization in G,, ; can be expressed as

Lxk(N) = T1Lx(AN)T,  with Ty = { I“B”" g: ] T, = { '[Sg;)" gz ]

and B1 c R(r+1]n><sn 52 c anx(s+1]n C1 c Rsnxsn 02 c Rrnxrn.

= G(S) = DK +éK(ZK(S))_1§K with EK = eK{.Tz, %K = T{B;(.
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= Any linearization in G,, ; can be expressed as

Lxk(N) = T1Lx(AN)T,  with Ty = { I“B”" g: ] T, = { '[Sg;)" gz ]

and B1 c R(r+1]n><sn' 52 c anx(s+1]n' C1 c Rsnxsn, 02 c Rrxrn,
- G(S) = DK +EK(ZK(S))_1§K with EK = eK{.Tg, %K = T{B;(.
v G(s) = Dk + C (I + (s — s0)Mx) "R with

My = (Lx(s0) ' T1ExTo, R = (Lx(s0)) " Br,
= T; "Mk Ty, =T, "R
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= Any linearization in G,, ; can be expressed as

Lxk(N) = T1Lx(AN)T,  with Ty = { I“B”" g: ] T, = { '[Sg;)" gg ]

and B1 c R(r+1]n><sn' 52 c anx(s+1]n' C1 c Rsnxsn, C2 c Rrxrn,
- G(S) = DK +EK(ZK(S))_1§K with EK = eK{.Tg, %K = T{B;(.
v G(s) = Dk + C (I + (s — s0)Mx) "R with
Mk = (£x(%0)) 7' T1Ex T2, R = (Lk(s0)) "B,
= T; "Mk Ty, =T, "R
v Thus, K(Myk, Re) = Ty 'K (Mx, Re).
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Approach 1 Lineari Example Robot ~ Conclusions
Vector space Ly (P)  Vector space G,

Block Kronecker Ansatz space G, 1

= Any linearization in G,1 can be expressed as

Lx(A) =T1Lx(AN)T,  with Ty = { ’“6”” g: ] Tp = { '“g;)" gz }

and B, € RUr+1nxsn B, ¢ Rrax(st1)n o, ¢ Rsnxsn G, ¢ Rr<rn,
» G(s) = Dk + Cx(Lk(s)) "By with Cx = CxT, Bx = T4 B.
» G(s) = D + Cx(l + (5 — 55)Mx) 'R with
My = (Lk(50)) ' T1Ex T, Ric = (Lk(50)) " Br,
=T, M Ty, =T, "R
v Thus, K(Myk, Re) = T 'K (M, Re).-

= As before: Compute basis of iKs(JVEK, TJEK). Represent it in block form with blocks
W; € C™', j=1,...,L. Generate reduced order higher order system via projection
with V, the matrix representing an orthonormal basis of span{W,, {}.
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a* a® a?

Zox(D) + P %x(t) + Pox(t) = Bul(t),

x() + Ci %x(t) + Cox(t) = y(1)

P4 (t)+P3—X(t)+P2

ar* ae

@ @
dt

Du(t) + Cs—=x(t) + C»

dt?

P,(}) with n=100

10°

L,

77777 struc. L1 (A
G,

,,,,, struc. G,(\)

S
&

P0=1/100*gallery(’poisson’,10);
P2=randn(100) ;P2=(P2+P2°)/5;
P4=.5%gallery(’poisson’,10);
Pl=rand(100);P1=P1-P1’;
P3=randn(100) ;P3=P3-P37;

%
/
/

spectral condition number
3
2

102 100 102 104
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P, (3) with n=100

5]
Qo
£
5
E 1
c
S
E
g
8
= 1
kst
o
a
@
100 . . .
10 102 10° 102
A
P,(A) with n=100
10°

spectral condition number
3
S

10*

spectral condition number

spectral condition number

10° . . .
10 102 10° 102 10
A
P,(}) with n=100
10°




spectral condition number
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Universitat
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d4
P4?X

DU(t) aF Cs

10°

(t) a4 P3—X(t) = P2

a® a?
dtd
a® a?
WX(I‘) a4 Czﬁ

P,(}) with n=100

Zox(D) + P %x(t) + Pox(t) = Bu(t), P, = (—1)PT

L,
struc. L1 (A
G,

struc. G,(\)

102 100 102

x() + Ci %x(t) + Cox(t) = y(1)

P0=1/100*gallery(’poisson’,10);
P2=randn(100) ; P2=(P2+P2°)/30;
P4=eye(n);
Pl=rand(100);P1=P1-P1’;
P3=randn(100) ;P3=P3-P37;
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P, (%) with n=100 P, (X) with n=100

spectral condition number
spectral condition number

spectral condition number
spectral condition number
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igenval
20 eigenvalues
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20 log, (1G(s)))

20 l0g,(1G(s)))

Comp Linearization, r =12
s50F T T T T ]
original
red
0
-50
100 \ . \ . . \ .
-10 -8 -6 -4 -2 4 6 8 10
Block Kronecker Linearization, r =12
s0F T T T T T 1
original
red
0
-50
100 . . \ . . . .
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o
=]

20 log, (1G(s)))
o

original

Block Kronecker Linearization, r

=42

20 lg, (1G(s)))
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C ion Linearization, r =72

P i

o
=]

0
Q
<
o>
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o
&
-50

Block Kronecker Linearization, r =72

20 log,(1G(s)])
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= Galerkin projection based MOR for higher order LTI systems.
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= Galerkin projection based MOR for higher order LTI systems.
= Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.
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= Galerkin projection based MOR for higher order LTI systems.

= Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.

= Vector spaces L (P) and G, ¢ (P) allow to generate an abundance of
linearizations.
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= Galerkin projection based MOR for higher order LTI systems.

= Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.

= Vector spaces L (P) and G, ¢ (P) allow to generate an abundance of

linearizations.
= Linearizations have different condition.
= |tis not (yet) clear how to choose an optimally conditioned linearization.

Thank you for your attention!
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= Vector spaces L (P) and G, ¢ (P) allow to generate an abundance of

linearizations.
= Linearizations have different condition.
= |tis not (yet) clear how to choose an optimally conditioned linearization.
= For the structured robot example, the structured linearizations seem to be better
conditioned.
» LU decomposition of linearization needs to be computed efficiently.
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= Galerkin projection based MOR for higher order LTI systems.
= Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.
= Vector spaces L (P) and G, ¢ (P) allow to generate an abundance of
linearizations.
= Linearizations have different condition.
= |tis not (yet) clear how to choose an optimally conditioned linearization.
= For the structured robot example, the structured linearizations seem to be better
conditioned.
» LU decomposition of linearization needs to be computed efficiently.
= For block-dense linearizations, the LU decomposition can be computed in about © (¢3n?)
flops.

Thank you for your attention!
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= Galerkin projection based MOR for higher order LTI systems.
= Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.
= Vector spaces L (P) and G, ¢ (P) allow to generate an abundance of
linearizations.
= Linearizations have different condition.
= |tis not (yet) clear how to choose an optimally conditioned linearization.
= For the structured robot example, the structured linearizations seem to be better
conditioned.
» LU decomposition of linearization needs to be computed efficiently.
= For block-dense linearizations, the LU decomposition can be computed in about © (¢3n?)
flops.
= For the structured robot example, the LU decomposition of the structured block Kronecker
linearization can be computed in just O (n® + €2n?) flops.

Thank you for your attention!
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Galerkin projection based MOR for higher order LTI systems.
Compute projection from linearization of higher order LTI system such that higher
order system can be recovered.
Vector spaces LL;(P) and G, 1(P) allow to generate an abundance of
linearizations.
Linearizations have different condition.
= |tis not (yet) clear how to choose an optimally conditioned linearization.
= For the structured robot example, the structured linearizations seem to be better
conditioned.
LU decomposition of linearization needs to be computed efficiently.
= For block-dense linearizations, the LU decomposition can be computed in about © (¢3n?)
flops.
= For the structured robot example, the LU decomposition of the structured block Kronecker
linearization can be computed in just O (n® + €2n?) flops.
Open question: What are the dominant poles of a higher order system?

Thank you for your attention!
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